{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d55bcc88e40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689975957058352498, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHEQkz7MJQu+kqwKP9RolT+7Hbg/ocbvvsKcCb/GKB2/AKtWP1ohoLxcT+K++DDmP1/0Xj8IajC/g1tdP2lU2DuzyZ0/bZqlvszoOr9sHVW/16o0v+Lkwj5eTJ0/WgtsPbV6g79VnfE+cFQJP/NveD8YjBLALUtlP10SKz4FEL+/s8sQPrzkbz29GUa9PYxGP6DKCb+NuC+8YgWIv3aJhrz22p2/w/xXO0VgXj+71bo8c5wuv7hBmbvAkD0/WzbDPEyyB7//6CA8MAaGv3gAgry5OXk/VZ3xPnBUCT/zb3g/1qoSwEOyQj9hPIo+eRW/vy6PED75CXI9jLpFvWgeRz96dOm+qasLvCxCiL9m2oi8ZN6dvzzAjzuiaF4/tZK4PGt2Ob9fMFa70lE9PxwhwzxFQxy/uAtEPD02hr+urH28uTl5P1Wd8T5wVAk/8294P99Ktb7tf00/FY91PiPglL0GiYi//c7NPSb3e75MzVm+GCksPyxj5r6mI/i+aad6v1P+Jr8/Nz8/9eqyPoZyuD8ntRs/IxifP0MviD1DczTAjDhBv+0reb3FVKc+GbNOP7V6g79VnfE+p5vuv/NveD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAtC5w1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV5kxPAAAAADLPeG/AAAAAJ2ycTwAAAAA6/rgPwAAAAAF6Um9AAAAAKLx9z8AAAAA58XJvQAAAACOOu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt3K1NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDUoJr0AAAAA6/H6vwAAAAA1z708AAAAADRk6j8AAAAAVYoSPgAAAADtjO0/AAAAAOj+Bb0AAAAALQ7fvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE4RhrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB3qLU9AAAAAK/B9L8AAAAATI1pvQAAAACChfA/AAAAAHz0YLoAAAAAm8ToPwAAAAAnz+k8AAAAAMUv5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4v5K1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAW+GBPQAAAAA/+d2/AAAAAG74fj0AAAAAaVr9PwAAAABqZno9AAAAAAfR3T8AAAAA01jWPQAAAABWYf2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5Vd1p0wJyMAWyUTegDjAF0lEdAq6rtrftQbnV9lChoBkdAmbAlme18cGgHTegDaAhHQKus6bH6uW91fZQoaAZHQJIOpefI0ZZoB03oA2gIR0Crrv3xWkrPdX2UKGgGR0CelqiHqNZNaAdN6ANoCEdAq7OPmxMWXXV9lChoBkdAnUZNkWhysGgHTegDaAhHQKu3w+QlruZ1fZQoaAZHQJx+6e8PFvRoB03oA2gIR0CruoItL+PzdX2UKGgGR0CdoZzfJmulaAdN6ANoCEdAq73DVvuPWHV9lChoBkdAnBjfBnBciWgHTegDaAhHQKvDEjps41h1fZQoaAZHQJ5vjfrKNhpoB03oA2gIR0Crx1j0L+gldX2UKGgGR0Cd5YzasZHeaAdN6ANoCEdAq8k8RHww03V9lChoBkdAnSHlTm4iHWgHTegDaAhHQKvLUnc+JP91fZQoaAZHQJtWKby6MBJoB03oA2gIR0Crz+i35N48dX2UKGgGR0CfMY0SRKYiaAdN6ANoCEdAq9RHUx20RnV9lChoBkdAnSfsnuy/sWgHTegDaAhHQKvXMBjnV5N1fZQoaAZHQJuUNJCjUNNoB03oA2gIR0Cr2rjxCpm3dX2UKGgGR0CeC1Gsmv4eaAdN6ANoCEdAq9+qGtZFHHV9lChoBkdAmp0c0pEx7GgHTegDaAhHQKvj9YgaFVV1fZQoaAZHQJUTjLLZBcBoB03oA2gIR0Cr5ePgm7aqdX2UKGgGR0Ca0G6aLGaQaAdN6ANoCEdAq+f1TcZccHV9lChoBkdAnhPVu76HkGgHTegDaAhHQKvsf+WnjyZ1fZQoaAZHQJvdhx6v7nBoB03oA2gIR0Cr8SQHiWE9dX2UKGgGR0CX5yb1RLsbaAdN6ANoCEdAq/P7O1OTJXV9lChoBkdAm5+xJI1+AmgHTegDaAhHQKv3ekeIVM51fZQoaAZHQJubcxyn1nNoB03oA2gIR0Cr/Awa72+PdX2UKGgGR0Ccn6tGNJe3aAdN6ANoCEdArABB8lXzUnV9lChoBkdAncAJxJd0JWgHTegDaAhHQKwCGnDziCJ1fZQoaAZHQJxhkcIZ62RoB03oA2gIR0CsBC6/ATIvdX2UKGgGR0CdYyQemvW6aAdN6ANoCEdArAi3RArxzHV9lChoBkdAmgoEi2UjcGgHTegDaAhHQKwNzizcAR11fZQoaAZHQJfd82m51/5oB03oA2gIR0CsELbxd6cBdX2UKGgGR0Cd21zw+dK/aAdN6ANoCEdArBPhRZU1h3V9lChoBkdAmj5RRMvh62gHTegDaAhHQKwYZ/oaDPJ1fZQoaAZHQJiOZPSDyvtoB03oA2gIR0CsHIzP8hs7dX2UKGgGR0CfoBGTcIqtaAdN6ANoCEdArB54ccU/OnV9lChoBkdAn15OhkAggWgHTegDaAhHQKwgmsA/9pB1fZQoaAZHQJ+3w7aIvaloB03oA2gIR0CsJTv557gLdX2UKGgGR0CgJd5b6guiaAdN6ANoCEdArCqYF1SwW3V9lChoBkdAoEAdLpRoAWgHTegDaAhHQKwtmus90Rx1fZQoaAZHQKBZx/jsD4hoB03oA2gIR0CsMGqgZjx1dX2UKGgGR0CGv+Uqx1PnaAdN6ANoCEdArDUM7jkuH3V9lChoBkdAoS4DE5yU92gHTegDaAhHQKw5KzLwF1V1fZQoaAZHQJ//dx82Ji1oB03oA2gIR0CsOxMcQyyldX2UKGgGR0CgM4QL/jsEaAdN6ANoCEdArD0ltoBaLXV9lChoBkdAnyUpXZGrj2gHTegDaAhHQKxBpjWCmMx1fZQoaAZHQJanVddE9dNoB03oA2gIR0CsRw+wC8vmdX2UKGgGR0ChH7JGWldkaAdN6ANoCEdArEoomVqveXV9lChoBkdAnoAHHBDXv2gHTegDaAhHQKxMksPJ7sx1fZQoaAZHQJ+mnPmgam5oB03oA2gIR0CsURFQdjoZdX2UKGgGR0Cct/f6oESvaAdN6ANoCEdArFU/FzdUKnV9lChoBkdAnBMxYaHbh2gHTegDaAhHQKxXKQzUI9l1fZQoaAZHQJ8pPfk3juNoB03oA2gIR0CsWTeDOC5FdX2UKGgGR0Cg+MDriVB2aAdN6ANoCEdArF3Yjps41nV9lChoBkdAoL4lRrJr+GgHTegDaAhHQKxlSOuJUHZ1fZQoaAZHQJ8lCMir1dxoB03oA2gIR0CsaHuearmydX2UKGgGR0CgZtJB5X2eaAdN6ANoCEdArGwRASnLq3V9lChoBkdAnpFy8OCoTGgHTegDaAhHQKxw6a8YhuB1fZQoaAZHQKEMN1schkloB03oA2gIR0CsdSRrrPdEdX2UKGgGR0CgKUrvb48EaAdN6ANoCEdArHcCdQO4G3V9lChoBkdAnm4FQdjoZGgHTegDaAhHQKx5SUY8+zN1fZQoaAZHQJy0m0AtFrloB03oA2gIR0CsffQ6hg3MdX2UKGgGR0CcJ64uK4x2aAdN6ANoCEdArILSOq//N3V9lChoBkdAk3aRC2MKkWgHTegDaAhHQKyFqd7OVxF1fZQoaAZHQJ3kuVpsXSBoB03oA2gIR0CsiNcawUxmdX2UKGgGR0CgH8o/qxC6aAdN6ANoCEdArI1+EGqxT3V9lChoBkdAnDnxC2MKkWgHTegDaAhHQKyRmanaWX11fZQoaAZHQJ32b/vOQhhoB03oA2gIR0Csk3WAoXsPdX2UKGgGR0Ccp1rYGt6paAdN6ANoCEdArJWclgMMJHV9lChoBkdAnnMeLR8c/GgHTegDaAhHQKyaMRe1KGt1fZQoaAZHQJ2XANYr8SBoB03oA2gIR0Csn5C5mRNidX2UKGgGR0Cf7x7I1cdHaAdN6ANoCEdArKKN34bjtHV9lChoBkdAoFJMZ3s5XGgHTegDaAhHQKylWRISUTt1fZQoaAZHQKCPL2dupCNoB03oA2gIR0Csqdc01qFidX2UKGgGR0CfUogHeJpGaAdN6ANoCEdArK37SG8Em3V9lChoBkdAoDk0oOQQtmgHTegDaAhHQKyv3YmLLp11fZQoaAZHQJ9aAAJb+tNoB03oA2gIR0CssfMDGLk0dX2UKGgGR0Cg7uoWHk92aAdN6ANoCEdArLZ6b8WKuXV9lChoBkdAoceIrSVnmWgHTegDaAhHQKy70UgSvkl1fZQoaAZHQKDL31DBuXNoB03oA2gIR0CsvsEnTiKjdX2UKGgGR0Cg61G5MDfWaAdN6ANoCEdArMFRSgoPTXV9lChoBkdAnvFo8U21lWgHTegDaAhHQKzF5rY5DJF1fZQoaAZHQJny/SkTHsFoB03oA2gIR0CsyhAyM1jzdX2UKGgGR0CVm+IgNgBtaAdN6ANoCEdArMvttbcGknV9lChoBkdAmc/aF23az2gHTegDaAhHQKzN/dJrcj91fZQoaAZHQJo9a4Ds+mpoB03oA2gIR0Cs0oOX/o7ndX2UKGgGR0CeYioW56MSaAdN6ANoCEdArNhW9YfW+XV9lChoBkdAlR7kaya/h2gHTegDaAhHQKzblj3mFJx1fZQoaAZHQJLlgELYwqRoB03oA2gIR0Cs3c4RdyDJdX2UKGgGR0CfCwvH93r2aAdN6ANoCEdArOJrqyGBWnV9lChoBkdAmTGBnrY5DWgHTegDaAhHQKzmgF3Y+St1fZQoaAZHQKIFm2tuDSRoB03oA2gIR0Cs6F3yAhB7dX2UKGgGR0ChxAWOIZZTaAdN6ANoCEdArOpqDPGACnV9lChoBkdAoPAxhF3IMmgHTegDaAhHQKzvBI1+AmR1fZQoaAZHQJ4OhdQfp2VoB03oA2gIR0Cs9TqZML4OdX2UKGgGR0CHjFDCP6sRaAdN6ANoCEdArPggmNR3vHV9lChoBkdAl+6kJKJ2uGgHTegDaAhHQKz6RQPZqVR1fZQoaAZHQKDii+h4+r5oB03oA2gIR0Cs/sdWIXTFdX2UKGgGR0ChXPlXq7iAaAdN6ANoCEdArQMRu89Oh3V9lChoBkdAlTisSGrS3WgHTegDaAhHQK0FFCY1He91fZQoaAZHQJg2rlZHNHJoB03oA2gIR0CtB1LHuJDWdX2UKGgGR0CRQFC04R29aAdN6ANoCEdArQxZkVeruXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}