Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -4.13 +/- 1.41
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8081571a762a697e7bd75874a5f9b289ec694dd047c8c017056d71d42092cc09
|
3 |
+
size 108145
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d55bcc9b9a0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d55bcc88f80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1689980081964902836,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZAvLPvjFoTyjvwo/ZAvLPvjFoTyjvwo/ZAvLPvjFoTyjvwo/ZAvLPvjFoTyjvwo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW8ZjP63KlL+AXEA/KBRivqths78j050/Vg/IPtnKA7+e/IQ/MziVP9hNgz92rLu+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkC8s++MWhPKO/Cj9U7S889xgGuRz9WrhkC8s++MWhPKO/Cj9U7S889xgGuRz9WrhkC8s++MWhPKO/Cj9U7S889xgGuRz9WrhkC8s++MWhPKO/Cj9U7S889xgGuRz9WriUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.39657128 0.01974772 0.54198664]\n [0.39657128 0.01974772 0.54198664]\n [0.39657128 0.01974772 0.54198664]\n [0.39657128 0.01974772 0.54198664]]",
|
38 |
+
"desired_goal": "[[ 0.8897454 -1.1624352 0.75141144]\n [-0.22078001 -1.4014181 1.2330059 ]\n [ 0.390742 -0.51481396 1.0389593 ]\n [ 1.1657776 1.0258131 -0.36655015]]",
|
39 |
+
"observation": "[[ 3.9657128e-01 1.9747719e-02 5.4198664e-01 1.0737736e-02\n -1.2788536e-04 -5.2210977e-05]\n [ 3.9657128e-01 1.9747719e-02 5.4198664e-01 1.0737736e-02\n -1.2788536e-04 -5.2210977e-05]\n [ 3.9657128e-01 1.9747719e-02 5.4198664e-01 1.0737736e-02\n -1.2788536e-04 -5.2210977e-05]\n [ 3.9657128e-01 1.9747719e-02 5.4198664e-01 1.0737736e-02\n -1.2788536e-04 -5.2210977e-05]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfkEYvrwxib2kz2s9zDYEvtqA4T22BuA98NHwvcY7BL6ZBgk9wb+iPIpkPD34Qmk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.14868733 -0.06698939 0.05757107]\n [-0.12911528 0.11010905 0.1093878 ]\n [-0.11758792 -0.12913427 0.03345356]\n [ 0.01986683 0.04599432 0.22779453]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwLFnz2UKAsCUhpRSlIwBbJRLMowBdJRHQKhZFfFaSs91fZQoaAZoCWgPQwgwEW+df9sMwJSGlFKUaBVLMmgWR0CoWNdC/oJRdX2UKGgGaAloD0MI8ia/RSerBcCUhpRSlGgVSzJoFkdAqFiUwvg3tXV9lChoBmgJaA9DCCXNH9Pa1AfAlIaUUpRoFUsyaBZHQKhYVBppN9J1fZQoaAZoCWgPQwgoLVxWYVMawJSGlFKUaBVLMmgWR0CoWgTZg5R1dX2UKGgGaAloD0MILSXLSSi9D8CUhpRSlGgVSzJoFkdAqFnGDcuannV9lChoBmgJaA9DCIqw4emVkgPAlIaUUpRoFUsyaBZHQKhZg3gDRtx1fZQoaAZoCWgPQwh3K0t0lrkEwJSGlFKUaBVLMmgWR0CoWULOZ9eAdX2UKGgGaAloD0MIxy3m54bGA8CUhpRSlGgVSzJoFkdAqFrypWFN+XV9lChoBmgJaA9DCN/cXz3u+wPAlIaUUpRoFUsyaBZHQKhas9vjwQV1fZQoaAZoCWgPQwj0qPi/IyoOwJSGlFKUaBVLMmgWR0CoWnFe4TbndX2UKGgGaAloD0MIby9pjNaxBcCUhpRSlGgVSzJoFkdAqFowxagVXXV9lChoBmgJaA9DCLVv7q8etwXAlIaUUpRoFUsyaBZHQKhb6Yx+KCR1fZQoaAZoCWgPQwgjaMwk6kUEwJSGlFKUaBVLMmgWR0CoW6valDWtdX2UKGgGaAloD0MI58Qe2sc6E8CUhpRSlGgVSzJoFkdAqFtpfx+a0HV9lChoBmgJaA9DCBAhrpy98/+/lIaUUpRoFUsyaBZHQKhbKO5rgwZ1fZQoaAZoCWgPQwimK9hGPPkMwJSGlFKUaBVLMmgWR0CoXOIE8q4IdX2UKGgGaAloD0MI2safqGzYAMCUhpRSlGgVSzJoFkdAqFyjc9GI9HV9lChoBmgJaA9DCIARNGYSFQHAlIaUUpRoFUsyaBZHQKhcYQAdXDF1fZQoaAZoCWgPQwj9EYYBS44HwJSGlFKUaBVLMmgWR0CoXCBcZ9/jdX2UKGgGaAloD0MIEsKjjSO2A8CUhpRSlGgVSzJoFkdAqF3fcN6PbXV9lChoBmgJaA9DCCY3iqw1NAbAlIaUUpRoFUsyaBZHQKhdoTnq3Vl1fZQoaAZoCWgPQwhCz2bV54oXwJSGlFKUaBVLMmgWR0CoXV+4TbnHdX2UKGgGaAloD0MIWKmgouoXD8CUhpRSlGgVSzJoFkdAqF0f2ys0YXV9lChoBmgJaA9DCNz10hQBjgrAlIaUUpRoFUsyaBZHQKhe08Hv+fh1fZQoaAZoCWgPQwhjKv2Es0sQwJSGlFKUaBVLMmgWR0CoXpUNrj5sdX2UKGgGaAloD0MIJeoFn+YEB8CUhpRSlGgVSzJoFkdAqF5Sqp97W3V9lChoBmgJaA9DCFJ95xclyBLAlIaUUpRoFUsyaBZHQKheEgW8AaN1fZQoaAZoCWgPQwjZz2Ipko8GwJSGlFKUaBVLMmgWR0CoX8Cml67edX2UKGgGaAloD0MIp8tiYvNRCMCUhpRSlGgVSzJoFkdAqF+B8rqdH3V9lChoBmgJaA9DCJZ2ai43WA/AlIaUUpRoFUsyaBZHQKhfP5k9U0h1fZQoaAZoCWgPQwj6JeKt848HwJSGlFKUaBVLMmgWR0CoXv7qyGBXdX2UKGgGaAloD0MIcOoDyTtnBcCUhpRSlGgVSzJoFkdAqGC2MZP2wnV9lChoBmgJaA9DCIUGYtnMAQ7AlIaUUpRoFUsyaBZHQKhgd4keIVN1fZQoaAZoCWgPQwgB3CxeLKwCwJSGlFKUaBVLMmgWR0CoYDUr9VFQdX2UKGgGaAloD0MImngHeNJiA8CUhpRSlGgVSzJoFkdAqF/0XvYvnXV9lChoBmgJaA9DCHWw/s9h/gHAlIaUUpRoFUsyaBZHQKhhpxZMcp91fZQoaAZoCWgPQwjPvvIgPSUSwJSGlFKUaBVLMmgWR0CoYWhIOH32dX2UKGgGaAloD0MI0erkDMX9CcCUhpRSlGgVSzJoFkdAqGEl+CsfaHV9lChoBmgJaA9DCPBquTMTPBPAlIaUUpRoFUsyaBZHQKhg5TefqX51fZQoaAZoCWgPQwgYeO49XHIDwJSGlFKUaBVLMmgWR0CoYvP2PDHfdX2UKGgGaAloD0MITPvm/uoxD8CUhpRSlGgVSzJoFkdAqGK14HHFP3V9lChoBmgJaA9DCAjkEkceCADAlIaUUpRoFUsyaBZHQKhidBJI1+B1fZQoaAZoCWgPQwhiMH+FzDUJwJSGlFKUaBVLMmgWR0CoYjRKQJXydX2UKGgGaAloD0MIW18ktOVsEcCUhpRSlGgVSzJoFkdAqGSLoKUmlnV9lChoBmgJaA9DCGrC9pMxvg3AlIaUUpRoFUsyaBZHQKhkTbi6xxF1fZQoaAZoCWgPQwhpVyHlJ1UCwJSGlFKUaBVLMmgWR0CoZAxQJokBdX2UKGgGaAloD0MICVG+oIX0FsCUhpRSlGgVSzJoFkdAqGPMW/JvHnV9lChoBmgJaA9DCGrecYqOBBbAlIaUUpRoFUsyaBZHQKhmGV45cTt1fZQoaAZoCWgPQwjyRBDn4YQHwJSGlFKUaBVLMmgWR0CoZdtke6qbdX2UKGgGaAloD0MIqdpugm9aFsCUhpRSlGgVSzJoFkdAqGWZf4REnnV9lChoBmgJaA9DCLraiv1l9w/AlIaUUpRoFUsyaBZHQKhlWX7+DOF1fZQoaAZoCWgPQwiLwcO0by4IwJSGlFKUaBVLMmgWR0CoZ7Af+0gKdX2UKGgGaAloD0MIPudu10sT/r+UhpRSlGgVSzJoFkdAqGdyUmlZYHV9lChoBmgJaA9DCB8PfXcraw/AlIaUUpRoFUsyaBZHQKhnMH/Lkjp1fZQoaAZoCWgPQwgyrOKNzCMOwJSGlFKUaBVLMmgWR0CoZvCml67edX2UKGgGaAloD0MIHHxhMlVAFMCUhpRSlGgVSzJoFkdAqGlbvkRzzXV9lChoBmgJaA9DCFVq9kArEBTAlIaUUpRoFUsyaBZHQKhpHfYzzmR1fZQoaAZoCWgPQwgHX5hMFfwRwJSGlFKUaBVLMmgWR0CoaNyDqW1MdX2UKGgGaAloD0MITpmbb0SXB8CUhpRSlGgVSzJoFkdAqGicytV7yHV9lChoBmgJaA9DCPuRIjKsIgrAlIaUUpRoFUsyaBZHQKhq2UL2HtZ1fZQoaAZoCWgPQwiTbkvkghMAwJSGlFKUaBVLMmgWR0CoapqMvRJFdX2UKGgGaAloD0MIPjxLkBGQC8CUhpRSlGgVSzJoFkdAqGpX/Lkjo3V9lChoBmgJaA9DCNMRwM3i1RbAlIaUUpRoFUsyaBZHQKhqFz9S/CZ1fZQoaAZoCWgPQwg0L4fdd2wSwJSGlFKUaBVLMmgWR0Coa8x28qWkdX2UKGgGaAloD0MIFvcfmQ6dCMCUhpRSlGgVSzJoFkdAqGuNuJk5InV9lChoBmgJaA9DCHKndLD+bwbAlIaUUpRoFUsyaBZHQKhrS0tRNyp1fZQoaAZoCWgPQwhx5eyd0QYUwJSGlFKUaBVLMmgWR0CoawqgRK6GdX2UKGgGaAloD0MIvTjx1Y4iCMCUhpRSlGgVSzJoFkdAqGzC8Hv+fnV9lChoBmgJaA9DCOI6xhUXhwXAlIaUUpRoFUsyaBZHQKhshFG5MDh1fZQoaAZoCWgPQwhy+KQTCeYNwJSGlFKUaBVLMmgWR0CobEIGIKtxdX2UKGgGaAloD0MIICdMGM2qBMCUhpRSlGgVSzJoFkdAqGwBp5/smnV9lChoBmgJaA9DCBK/Yg0X2QDAlIaUUpRoFUsyaBZHQKhtuq2jO9p1fZQoaAZoCWgPQwgGRl7WxNIRwJSGlFKUaBVLMmgWR0CobXvqLS/kdX2UKGgGaAloD0MIxVT6CWf3C8CUhpRSlGgVSzJoFkdAqG05X4j8k3V9lChoBmgJaA9DCCV32ERmLhPAlIaUUpRoFUsyaBZHQKhs+KIi1Rd1fZQoaAZoCWgPQwjfb7Tjhr8EwJSGlFKUaBVLMmgWR0CobqwRGtp3dX2UKGgGaAloD0MI2xg74SXYC8CUhpRSlGgVSzJoFkdAqG5tgx8D0XV9lChoBmgJaA9DCOOKi6NygxnAlIaUUpRoFUsyaBZHQKhuKwi7kGR1fZQoaAZoCWgPQwiyD7IsmFgYwJSGlFKUaBVLMmgWR0CobepI1+AmdX2UKGgGaAloD0MIXHaIf9gSDcCUhpRSlGgVSzJoFkdAqG+hWV/tpnV9lChoBmgJaA9DCH+EYcCSiwDAlIaUUpRoFUsyaBZHQKhvYsQumJp1fZQoaAZoCWgPQwi0sKcd/toDwJSGlFKUaBVLMmgWR0CobyBJiAlOdX2UKGgGaAloD0MIv0hoy7lUBMCUhpRSlGgVSzJoFkdAqG7fi5uqFXV9lChoBmgJaA9DCECEuHL27g7AlIaUUpRoFUsyaBZHQKhwnPyCnP51fZQoaAZoCWgPQwgQlrGhmx0RwJSGlFKUaBVLMmgWR0CocF4/Vy3kdX2UKGgGaAloD0MI9G3BUl3gC8CUhpRSlGgVSzJoFkdAqHAbz5GjK3V9lChoBmgJaA9DCM6LE1/tOBDAlIaUUpRoFUsyaBZHQKhv2zKLbYd1fZQoaAZoCWgPQwj4U+OlmyQPwJSGlFKUaBVLMmgWR0CocZrdepn6dX2UKGgGaAloD0MIKcx7nGmiAMCUhpRSlGgVSzJoFkdAqHFcH6dlNHV9lChoBmgJaA9DCHdlFwyuGRXAlIaUUpRoFUsyaBZHQKhxGbPyCnR1fZQoaAZoCWgPQwiz0Tk/xdEFwJSGlFKUaBVLMmgWR0CocNltbcGkdX2UKGgGaAloD0MIUTHO34QiBcCUhpRSlGgVSzJoFkdAqHKTcsUZenV9lChoBmgJaA9DCHIycasgpgXAlIaUUpRoFUsyaBZHQKhyVOIqLCN1fZQoaAZoCWgPQwh8ZHPVPMccwJSGlFKUaBVLMmgWR0CochJoCdSVdX2UKGgGaAloD0MIIjSCjetfB8CUhpRSlGgVSzJoFkdAqHHRs9B8hXV9lChoBmgJaA9DCMmutIzU+xTAlIaUUpRoFUsyaBZHQKhzka/ATIx1fZQoaAZoCWgPQwi7Cb5p+gwDwJSGlFKUaBVLMmgWR0Coc1MySFGodX2UKGgGaAloD0MIjxg9t9AlFMCUhpRSlGgVSzJoFkdAqHMQq9XcQHV9lChoBmgJaA9DCB4YQPhQ4gvAlIaUUpRoFUsyaBZHQKhyz+85CF91ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:996ed6b11d303a80cf4f0b9b2dc8ca086d820aa72ad8f20159a755d66724e819
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cfc0132ba28d11c0b24ff7146fefc397da8319447372d5d883880c6727f3919
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d55bcc9b9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d55bcc88f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689980081964902836, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZAvLPvjFoTyjvwo/ZAvLPvjFoTyjvwo/ZAvLPvjFoTyjvwo/ZAvLPvjFoTyjvwo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW8ZjP63KlL+AXEA/KBRivqths78j050/Vg/IPtnKA7+e/IQ/MziVP9hNgz92rLu+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkC8s++MWhPKO/Cj9U7S889xgGuRz9WrhkC8s++MWhPKO/Cj9U7S889xgGuRz9WrhkC8s++MWhPKO/Cj9U7S889xgGuRz9WrhkC8s++MWhPKO/Cj9U7S889xgGuRz9WriUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39657128 0.01974772 0.54198664]\n [0.39657128 0.01974772 0.54198664]\n [0.39657128 0.01974772 0.54198664]\n [0.39657128 0.01974772 0.54198664]]", "desired_goal": "[[ 0.8897454 -1.1624352 0.75141144]\n [-0.22078001 -1.4014181 1.2330059 ]\n [ 0.390742 -0.51481396 1.0389593 ]\n [ 1.1657776 1.0258131 -0.36655015]]", "observation": "[[ 3.9657128e-01 1.9747719e-02 5.4198664e-01 1.0737736e-02\n -1.2788536e-04 -5.2210977e-05]\n [ 3.9657128e-01 1.9747719e-02 5.4198664e-01 1.0737736e-02\n -1.2788536e-04 -5.2210977e-05]\n [ 3.9657128e-01 1.9747719e-02 5.4198664e-01 1.0737736e-02\n -1.2788536e-04 -5.2210977e-05]\n [ 3.9657128e-01 1.9747719e-02 5.4198664e-01 1.0737736e-02\n -1.2788536e-04 -5.2210977e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfkEYvrwxib2kz2s9zDYEvtqA4T22BuA98NHwvcY7BL6ZBgk9wb+iPIpkPD34Qmk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14868733 -0.06698939 0.05757107]\n [-0.12911528 0.11010905 0.1093878 ]\n [-0.11758792 -0.12913427 0.03345356]\n [ 0.01986683 0.04599432 0.22779453]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwLFnz2UKAsCUhpRSlIwBbJRLMowBdJRHQKhZFfFaSs91fZQoaAZoCWgPQwgwEW+df9sMwJSGlFKUaBVLMmgWR0CoWNdC/oJRdX2UKGgGaAloD0MI8ia/RSerBcCUhpRSlGgVSzJoFkdAqFiUwvg3tXV9lChoBmgJaA9DCCXNH9Pa1AfAlIaUUpRoFUsyaBZHQKhYVBppN9J1fZQoaAZoCWgPQwgoLVxWYVMawJSGlFKUaBVLMmgWR0CoWgTZg5R1dX2UKGgGaAloD0MILSXLSSi9D8CUhpRSlGgVSzJoFkdAqFnGDcuannV9lChoBmgJaA9DCIqw4emVkgPAlIaUUpRoFUsyaBZHQKhZg3gDRtx1fZQoaAZoCWgPQwh3K0t0lrkEwJSGlFKUaBVLMmgWR0CoWULOZ9eAdX2UKGgGaAloD0MIxy3m54bGA8CUhpRSlGgVSzJoFkdAqFrypWFN+XV9lChoBmgJaA9DCN/cXz3u+wPAlIaUUpRoFUsyaBZHQKhas9vjwQV1fZQoaAZoCWgPQwj0qPi/IyoOwJSGlFKUaBVLMmgWR0CoWnFe4TbndX2UKGgGaAloD0MIby9pjNaxBcCUhpRSlGgVSzJoFkdAqFowxagVXXV9lChoBmgJaA9DCLVv7q8etwXAlIaUUpRoFUsyaBZHQKhb6Yx+KCR1fZQoaAZoCWgPQwgjaMwk6kUEwJSGlFKUaBVLMmgWR0CoW6valDWtdX2UKGgGaAloD0MI58Qe2sc6E8CUhpRSlGgVSzJoFkdAqFtpfx+a0HV9lChoBmgJaA9DCBAhrpy98/+/lIaUUpRoFUsyaBZHQKhbKO5rgwZ1fZQoaAZoCWgPQwimK9hGPPkMwJSGlFKUaBVLMmgWR0CoXOIE8q4IdX2UKGgGaAloD0MI2safqGzYAMCUhpRSlGgVSzJoFkdAqFyjc9GI9HV9lChoBmgJaA9DCIARNGYSFQHAlIaUUpRoFUsyaBZHQKhcYQAdXDF1fZQoaAZoCWgPQwj9EYYBS44HwJSGlFKUaBVLMmgWR0CoXCBcZ9/jdX2UKGgGaAloD0MIEsKjjSO2A8CUhpRSlGgVSzJoFkdAqF3fcN6PbXV9lChoBmgJaA9DCCY3iqw1NAbAlIaUUpRoFUsyaBZHQKhdoTnq3Vl1fZQoaAZoCWgPQwhCz2bV54oXwJSGlFKUaBVLMmgWR0CoXV+4TbnHdX2UKGgGaAloD0MIWKmgouoXD8CUhpRSlGgVSzJoFkdAqF0f2ys0YXV9lChoBmgJaA9DCNz10hQBjgrAlIaUUpRoFUsyaBZHQKhe08Hv+fh1fZQoaAZoCWgPQwhjKv2Es0sQwJSGlFKUaBVLMmgWR0CoXpUNrj5sdX2UKGgGaAloD0MIJeoFn+YEB8CUhpRSlGgVSzJoFkdAqF5Sqp97W3V9lChoBmgJaA9DCFJ95xclyBLAlIaUUpRoFUsyaBZHQKheEgW8AaN1fZQoaAZoCWgPQwjZz2Ipko8GwJSGlFKUaBVLMmgWR0CoX8Cml67edX2UKGgGaAloD0MIp8tiYvNRCMCUhpRSlGgVSzJoFkdAqF+B8rqdH3V9lChoBmgJaA9DCJZ2ai43WA/AlIaUUpRoFUsyaBZHQKhfP5k9U0h1fZQoaAZoCWgPQwj6JeKt848HwJSGlFKUaBVLMmgWR0CoXv7qyGBXdX2UKGgGaAloD0MIcOoDyTtnBcCUhpRSlGgVSzJoFkdAqGC2MZP2wnV9lChoBmgJaA9DCIUGYtnMAQ7AlIaUUpRoFUsyaBZHQKhgd4keIVN1fZQoaAZoCWgPQwgB3CxeLKwCwJSGlFKUaBVLMmgWR0CoYDUr9VFQdX2UKGgGaAloD0MImngHeNJiA8CUhpRSlGgVSzJoFkdAqF/0XvYvnXV9lChoBmgJaA9DCHWw/s9h/gHAlIaUUpRoFUsyaBZHQKhhpxZMcp91fZQoaAZoCWgPQwjPvvIgPSUSwJSGlFKUaBVLMmgWR0CoYWhIOH32dX2UKGgGaAloD0MI0erkDMX9CcCUhpRSlGgVSzJoFkdAqGEl+CsfaHV9lChoBmgJaA9DCPBquTMTPBPAlIaUUpRoFUsyaBZHQKhg5TefqX51fZQoaAZoCWgPQwgYeO49XHIDwJSGlFKUaBVLMmgWR0CoYvP2PDHfdX2UKGgGaAloD0MITPvm/uoxD8CUhpRSlGgVSzJoFkdAqGK14HHFP3V9lChoBmgJaA9DCAjkEkceCADAlIaUUpRoFUsyaBZHQKhidBJI1+B1fZQoaAZoCWgPQwhiMH+FzDUJwJSGlFKUaBVLMmgWR0CoYjRKQJXydX2UKGgGaAloD0MIW18ktOVsEcCUhpRSlGgVSzJoFkdAqGSLoKUmlnV9lChoBmgJaA9DCGrC9pMxvg3AlIaUUpRoFUsyaBZHQKhkTbi6xxF1fZQoaAZoCWgPQwhpVyHlJ1UCwJSGlFKUaBVLMmgWR0CoZAxQJokBdX2UKGgGaAloD0MICVG+oIX0FsCUhpRSlGgVSzJoFkdAqGPMW/JvHnV9lChoBmgJaA9DCGrecYqOBBbAlIaUUpRoFUsyaBZHQKhmGV45cTt1fZQoaAZoCWgPQwjyRBDn4YQHwJSGlFKUaBVLMmgWR0CoZdtke6qbdX2UKGgGaAloD0MIqdpugm9aFsCUhpRSlGgVSzJoFkdAqGWZf4REnnV9lChoBmgJaA9DCLraiv1l9w/AlIaUUpRoFUsyaBZHQKhlWX7+DOF1fZQoaAZoCWgPQwiLwcO0by4IwJSGlFKUaBVLMmgWR0CoZ7Af+0gKdX2UKGgGaAloD0MIPudu10sT/r+UhpRSlGgVSzJoFkdAqGdyUmlZYHV9lChoBmgJaA9DCB8PfXcraw/AlIaUUpRoFUsyaBZHQKhnMH/Lkjp1fZQoaAZoCWgPQwgyrOKNzCMOwJSGlFKUaBVLMmgWR0CoZvCml67edX2UKGgGaAloD0MIHHxhMlVAFMCUhpRSlGgVSzJoFkdAqGlbvkRzzXV9lChoBmgJaA9DCFVq9kArEBTAlIaUUpRoFUsyaBZHQKhpHfYzzmR1fZQoaAZoCWgPQwgHX5hMFfwRwJSGlFKUaBVLMmgWR0CoaNyDqW1MdX2UKGgGaAloD0MITpmbb0SXB8CUhpRSlGgVSzJoFkdAqGicytV7yHV9lChoBmgJaA9DCPuRIjKsIgrAlIaUUpRoFUsyaBZHQKhq2UL2HtZ1fZQoaAZoCWgPQwiTbkvkghMAwJSGlFKUaBVLMmgWR0CoapqMvRJFdX2UKGgGaAloD0MIPjxLkBGQC8CUhpRSlGgVSzJoFkdAqGpX/Lkjo3V9lChoBmgJaA9DCNMRwM3i1RbAlIaUUpRoFUsyaBZHQKhqFz9S/CZ1fZQoaAZoCWgPQwg0L4fdd2wSwJSGlFKUaBVLMmgWR0Coa8x28qWkdX2UKGgGaAloD0MIFvcfmQ6dCMCUhpRSlGgVSzJoFkdAqGuNuJk5InV9lChoBmgJaA9DCHKndLD+bwbAlIaUUpRoFUsyaBZHQKhrS0tRNyp1fZQoaAZoCWgPQwhx5eyd0QYUwJSGlFKUaBVLMmgWR0CoawqgRK6GdX2UKGgGaAloD0MIvTjx1Y4iCMCUhpRSlGgVSzJoFkdAqGzC8Hv+fnV9lChoBmgJaA9DCOI6xhUXhwXAlIaUUpRoFUsyaBZHQKhshFG5MDh1fZQoaAZoCWgPQwhy+KQTCeYNwJSGlFKUaBVLMmgWR0CobEIGIKtxdX2UKGgGaAloD0MIICdMGM2qBMCUhpRSlGgVSzJoFkdAqGwBp5/smnV9lChoBmgJaA9DCBK/Yg0X2QDAlIaUUpRoFUsyaBZHQKhtuq2jO9p1fZQoaAZoCWgPQwgGRl7WxNIRwJSGlFKUaBVLMmgWR0CobXvqLS/kdX2UKGgGaAloD0MIxVT6CWf3C8CUhpRSlGgVSzJoFkdAqG05X4j8k3V9lChoBmgJaA9DCCV32ERmLhPAlIaUUpRoFUsyaBZHQKhs+KIi1Rd1fZQoaAZoCWgPQwjfb7Tjhr8EwJSGlFKUaBVLMmgWR0CobqwRGtp3dX2UKGgGaAloD0MI2xg74SXYC8CUhpRSlGgVSzJoFkdAqG5tgx8D0XV9lChoBmgJaA9DCOOKi6NygxnAlIaUUpRoFUsyaBZHQKhuKwi7kGR1fZQoaAZoCWgPQwiyD7IsmFgYwJSGlFKUaBVLMmgWR0CobepI1+AmdX2UKGgGaAloD0MIXHaIf9gSDcCUhpRSlGgVSzJoFkdAqG+hWV/tpnV9lChoBmgJaA9DCH+EYcCSiwDAlIaUUpRoFUsyaBZHQKhvYsQumJp1fZQoaAZoCWgPQwi0sKcd/toDwJSGlFKUaBVLMmgWR0CobyBJiAlOdX2UKGgGaAloD0MIv0hoy7lUBMCUhpRSlGgVSzJoFkdAqG7fi5uqFXV9lChoBmgJaA9DCECEuHL27g7AlIaUUpRoFUsyaBZHQKhwnPyCnP51fZQoaAZoCWgPQwgQlrGhmx0RwJSGlFKUaBVLMmgWR0CocF4/Vy3kdX2UKGgGaAloD0MI9G3BUl3gC8CUhpRSlGgVSzJoFkdAqHAbz5GjK3V9lChoBmgJaA9DCM6LE1/tOBDAlIaUUpRoFUsyaBZHQKhv2zKLbYd1fZQoaAZoCWgPQwj4U+OlmyQPwJSGlFKUaBVLMmgWR0CocZrdepn6dX2UKGgGaAloD0MIKcx7nGmiAMCUhpRSlGgVSzJoFkdAqHFcH6dlNHV9lChoBmgJaA9DCHdlFwyuGRXAlIaUUpRoFUsyaBZHQKhxGbPyCnR1fZQoaAZoCWgPQwiz0Tk/xdEFwJSGlFKUaBVLMmgWR0CocNltbcGkdX2UKGgGaAloD0MIUTHO34QiBcCUhpRSlGgVSzJoFkdAqHKTcsUZenV9lChoBmgJaA9DCHIycasgpgXAlIaUUpRoFUsyaBZHQKhyVOIqLCN1fZQoaAZoCWgPQwh8ZHPVPMccwJSGlFKUaBVLMmgWR0CochJoCdSVdX2UKGgGaAloD0MIIjSCjetfB8CUhpRSlGgVSzJoFkdAqHHRs9B8hXV9lChoBmgJaA9DCMmutIzU+xTAlIaUUpRoFUsyaBZHQKhzka/ATIx1fZQoaAZoCWgPQwi7Cb5p+gwDwJSGlFKUaBVLMmgWR0Coc1MySFGodX2UKGgGaAloD0MIjxg9t9AlFMCUhpRSlGgVSzJoFkdAqHMQq9XcQHV9lChoBmgJaA9DCB4YQPhQ4gvAlIaUUpRoFUsyaBZHQKhyz+85CF91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (813 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -4.131985845812596, "std_reward": 1.413904413640275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-21T23:46:55.155197"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0ab72d2993582763c84de5efafb6f4354a245c4178284392c3d69b66ae60828
|
3 |
+
size 2387
|