Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,123 @@
|
|
1 |
-
|
2 |
-
library_name: transformers
|
3 |
-
tags: []
|
4 |
-
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
# OREO: Offline REasoning Optimization
|
|
|
|
|
|
|
2 |
|
3 |
+
Source code for [Offline Reinforcement Learning for LLM Multi-Step Reasoning](https://arxiv.org/abs/2412.16145)
|
4 |
|
5 |
+
Model: [Policy](https://huggingface.co/jwhj/Qwen2.5-Math-1.5B-OREO) | [Value](https://huggingface.co/jwhj/Qwen2.5-Math-1.5B-OREO-Value)
|
6 |
|
7 |
+
<img src="https://raw.githubusercontent.com/jwhj/OREO/refs/heads/main/OREO.png" alt="Image description" width="50%" />
|
8 |
|
9 |
|
10 |
+
# Installation
|
11 |
|
12 |
+
This repo is based on [OpenRLHF](https://github.com/OpenRLHF/OpenRLHF) and the installation follows a similar process. We recommend using Docker to setup the environment.
|
13 |
|
14 |
+
First build Docker image
|
15 |
+
```bash
|
16 |
+
cd dockerfile
|
17 |
+
docker build -t [IMAGE_NAME] .
|
18 |
+
```
|
19 |
|
20 |
+
Start a docker container
|
21 |
+
```bash
|
22 |
+
docker run -itd --ipc host --gpus all [IMAGE_NAME] bash
|
23 |
+
```
|
24 |
|
25 |
+
Attach to the container
|
26 |
+
```bash
|
27 |
+
docker exec -it [CONTAINER_ID] /bin/bash
|
28 |
+
```
|
|
|
|
|
|
|
29 |
|
30 |
+
Install the current repo
|
31 |
+
```bash
|
32 |
+
cd [PATH_TO_THIS_REPO]
|
33 |
+
pip install -e .
|
34 |
+
```
|
35 |
|
36 |
+
As the data collection process involves randomness, we will publish the training data used in our experiments in the near future.
|
37 |
|
38 |
+
# Reproduction
|
39 |
+
## Training
|
40 |
+
You may need to change the following command line options in the following scripts:
|
41 |
+
- `--train_file` specifies the path of training data in OREO experiments.
|
42 |
+
- `--dataset` specifies the path of training data in SFT experiments.
|
43 |
+
- `--save_path` specifies the path to save the model.
|
44 |
+
- `--pretrain` specifies the path to load the pretrained model. In OREO experiments, this should be the path to the SFT model.
|
45 |
|
46 |
+
### Math Reasoning
|
47 |
|
48 |
+
Supervised fine-tuning
|
49 |
+
```bash
|
50 |
+
cd example/scripts
|
51 |
+
bash train_oreo_sft.sh
|
52 |
+
```
|
53 |
|
54 |
+
OREO training
|
55 |
+
```bash
|
56 |
+
cd example/scripts
|
57 |
+
bash train_oreo.sh
|
58 |
+
```
|
59 |
|
60 |
+
To train the `DeepSeekMath-7B-Instruct` model,
|
61 |
+
```bash
|
62 |
+
cd example/scripts
|
63 |
+
bash train_oreo_deepseek-math.sh
|
64 |
+
```
|
65 |
+
Note that `DeepSeekMath-7B-Instruct` is already supervise fine-tuned, so we don't have an SFT phase here.
|
66 |
|
67 |
+
### ALFWorld
|
68 |
|
69 |
+
Supervised fine-tuning
|
70 |
+
```bash
|
71 |
+
cd example/scripts
|
72 |
+
bash train_oreo_alfworld_sft.sh
|
73 |
+
```
|
74 |
|
75 |
+
OREO training
|
76 |
+
```bash
|
77 |
+
cd example/scripts
|
78 |
+
bash train_oreo_alfworld.sh
|
79 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
## Evaluation
|
82 |
+
### Math Reasoning
|
83 |
+
|
84 |
+
Make sure you have `antlr4-python3-runtime==4.11.0` installed.
|
85 |
+
|
86 |
+
For Qwen-based models
|
87 |
+
```bash
|
88 |
+
cd example/scripts
|
89 |
+
python ../scratch/run_qwen.py --model [PATH_TO_YOUR_MODEL] --save [SAVE_GENERATED_RESULTS_JSONL]
|
90 |
+
```
|
91 |
+
|
92 |
+
For DeepSeekMath-based models
|
93 |
+
```bash
|
94 |
+
cd example/scripts
|
95 |
+
python ../scratch/run_qwen.py --model [PATH_TO_YOUR_MODEL] --no_bos --save [SAVE_GENERATED_RESULTS_JSONL]
|
96 |
+
```
|
97 |
+
Note the `--no_bos` option here.
|
98 |
+
|
99 |
+
### ALFWorld
|
100 |
+
|
101 |
+
This part requires [ALFWorld](https://github.com/alfworld/alfworld) to be installed.
|
102 |
+
|
103 |
+
First start an vllm server
|
104 |
+
```bash
|
105 |
+
python -m vllm.entrypoints.openai.api_server --model [PATH_TO_YOUR_MODEL]
|
106 |
+
```
|
107 |
+
|
108 |
+
Then run evaluation with
|
109 |
+
```bash
|
110 |
+
cd example/scripts
|
111 |
+
python ../scratch/run_alfworld_async.py --model [PATH_TO_YOUR_MODEL] --save_dir [SAVE_GENERATED_TRAJS]
|
112 |
+
```
|
113 |
+
You can use `--split eval_in_distribution` for seen environments.
|
114 |
+
|
115 |
+
## Reference
|
116 |
+
```bibtex
|
117 |
+
@inproceedings{Wang2024OfflineRL,
|
118 |
+
title={Offline Reinforcement Learning for LLM Multi-Step Reasoning},
|
119 |
+
author={Huaijie Wang and Shibo Hao and Hanze Dong and Shenao Zhang and Yilin Bao and Ziran Yang and Yi Wu},
|
120 |
+
year={2024},
|
121 |
+
url={https://api.semanticscholar.org/CorpusID:274965107}
|
122 |
+
}
|
123 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|