import torch from torch import nn from transformers import MobileBertPreTrainedModel, MobileBertModel class SimModel(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) # Initialize weights and apply final processing self.post_init() def forward(self, input_ids, attention_mask, token_type_ids, return_dict): print(input_ids, attention_mask, token_type_ids) return self.word_embeddings[input_ids]