jxie commited on
Commit
675ac4f
·
verified ·
1 Parent(s): f79e6c4

Create tokenization_qwen.py

Browse files
Files changed (1) hide show
  1. tokenization_qwen.py +272 -0
tokenization_qwen.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
+ SPECIAL_START_ID = 151643
32
+ SPECIAL_TOKENS = tuple(
33
+ enumerate(
34
+ (
35
+ (
36
+ ENDOFTEXT,
37
+ IMSTART,
38
+ IMEND,
39
+ )
40
+ + EXTRAS
41
+ ),
42
+ start=SPECIAL_START_ID,
43
+ )
44
+ )
45
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+
57
+ class QWenTokenizer(PreTrainedTokenizer):
58
+ """QWen tokenizer."""
59
+
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file,
65
+ errors="replace",
66
+ extra_vocab_file=None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(**kwargs)
70
+
71
+ # how to handle errors in decoding UTF-8 byte sequences
72
+ # use ignore if you are in streaming inference
73
+ self.errors = errors
74
+
75
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
+ self.special_tokens = {
77
+ token: index
78
+ for index, token in SPECIAL_TOKENS
79
+ }
80
+
81
+ # try load extra vocab from file
82
+ if extra_vocab_file is not None:
83
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
+ for token, index in extra_mergeable_ranks.items():
86
+ if token in self.mergeable_ranks:
87
+ logger.info(f"extra token {token} exists, skipping")
88
+ continue
89
+ if index in used_ids:
90
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
91
+ continue
92
+ self.mergeable_ranks[token] = index
93
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
+
95
+ enc = tiktoken.Encoding(
96
+ "Qwen",
97
+ pat_str=PAT_STR,
98
+ mergeable_ranks=self.mergeable_ranks,
99
+ special_tokens=self.special_tokens,
100
+ )
101
+ assert (
102
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
+
105
+ self.decoder = {
106
+ v: k for k, v in self.mergeable_ranks.items()
107
+ } # type: dict[int, bytes|str]
108
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
+
110
+ self.tokenizer = enc # type: tiktoken.Encoding
111
+
112
+ self.eod_id = self.tokenizer.eot_token
113
+ self.im_start_id = self.special_tokens[IMSTART]
114
+ self.im_end_id = self.special_tokens[IMEND]
115
+
116
+ def __getstate__(self):
117
+ # for pickle lovers
118
+ state = self.__dict__.copy()
119
+ del state["tokenizer"]
120
+ return state
121
+
122
+ def __setstate__(self, state):
123
+ # tokenizer is not python native; don't pass it; rebuild it
124
+ self.__dict__.update(state)
125
+ enc = tiktoken.Encoding(
126
+ "Qwen",
127
+ pat_str=PAT_STR,
128
+ mergeable_ranks=self.mergeable_ranks,
129
+ special_tokens=self.special_tokens,
130
+ )
131
+ self.tokenizer = enc
132
+
133
+ def __len__(self) -> int:
134
+ return self.tokenizer.n_vocab
135
+
136
+ def get_vocab(self) -> Dict[bytes, int]:
137
+ return self.mergeable_ranks
138
+
139
+ def convert_tokens_to_ids(
140
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
+ ) -> List[int]:
142
+ ids = []
143
+ if isinstance(tokens, (str, bytes)):
144
+ if tokens in self.special_tokens:
145
+ return self.special_tokens[tokens]
146
+ else:
147
+ return self.mergeable_ranks.get(tokens)
148
+ for token in tokens:
149
+ if token in self.special_tokens:
150
+ ids.append(self.special_tokens[token])
151
+ else:
152
+ ids.append(self.mergeable_ranks.get(token))
153
+ return ids
154
+
155
+ def _add_tokens(
156
+ self,
157
+ new_tokens: Union[List[str], List[AddedToken]],
158
+ special_tokens: bool = False,
159
+ ) -> int:
160
+ if not special_tokens and new_tokens:
161
+ raise ValueError("Adding regular tokens is not supported")
162
+ for token in new_tokens:
163
+ surface_form = token.content if isinstance(token, AddedToken) else token
164
+ if surface_form not in SPECIAL_TOKENS_SET:
165
+ raise ValueError("Adding unknown special tokens is not supported")
166
+ return 0
167
+
168
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
+ """
170
+ Save only the vocabulary of the tokenizer (vocabulary).
171
+ Returns:
172
+ `Tuple(str)`: Paths to the files saved.
173
+ """
174
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
175
+ with open(file_path, "w", encoding="utf8") as w:
176
+ for k, v in self.mergeable_ranks.items():
177
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
178
+ w.write(line)
179
+ return (file_path,)
180
+
181
+ def tokenize(
182
+ self,
183
+ text: str,
184
+ allowed_special: Union[Set, str] = "all",
185
+ disallowed_special: Union[Collection, str] = (),
186
+ **kwargs,
187
+ ) -> List[Union[bytes, str]]:
188
+ """
189
+ Converts a string in a sequence of tokens.
190
+ Args:
191
+ text (`str`):
192
+ The sequence to be encoded.
193
+ allowed_special (`Literal["all"]` or `set`):
194
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
195
+ Default to "all".
196
+ disallowed_special (`Literal["all"]` or `Collection`):
197
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
198
+ Default to an empty tuple.
199
+ kwargs (additional keyword arguments, *optional*):
200
+ Will be passed to the underlying model specific encode method.
201
+ Returns:
202
+ `List[bytes|str]`: The list of tokens.
203
+ """
204
+ tokens = []
205
+ text = unicodedata.normalize("NFC", text)
206
+
207
+ # this implementation takes a detour: text -> token id -> token surface forms
208
+ for t in self.tokenizer.encode(
209
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
210
+ ):
211
+ tokens.append(self.decoder[t])
212
+ return tokens
213
+
214
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
215
+ """
216
+ Converts a sequence of tokens in a single string.
217
+ """
218
+ text = ""
219
+ temp = b""
220
+ for t in tokens:
221
+ if isinstance(t, str):
222
+ if temp:
223
+ text += temp.decode("utf-8", errors=self.errors)
224
+ temp = b""
225
+ text += t
226
+ elif isinstance(t, bytes):
227
+ temp += t
228
+ else:
229
+ raise TypeError("token should only be of type types or str")
230
+ if temp:
231
+ text += temp.decode("utf-8", errors=self.errors)
232
+ return text
233
+
234
+ @property
235
+ def vocab_size(self):
236
+ return self.tokenizer.n_vocab
237
+
238
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
239
+ """Converts an id to a token, special tokens included"""
240
+ if index in self.decoder:
241
+ return self.decoder[index]
242
+ raise ValueError("unknown ids")
243
+
244
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
245
+ """Converts a token to an id using the vocab, special tokens included"""
246
+ if token in self.special_tokens:
247
+ return self.special_tokens[token]
248
+ if token in self.mergeable_ranks:
249
+ return self.mergeable_ranks[token]
250
+ raise ValueError("unknown token")
251
+
252
+ def _tokenize(self, text: str, **kwargs):
253
+ """
254
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
255
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
256
+ Do NOT take care of added tokens.
257
+ """
258
+ raise NotImplementedError
259
+
260
+ def _decode(
261
+ self,
262
+ token_ids: Union[int, List[int]],
263
+ skip_special_tokens: bool = False,
264
+ errors: str = None,
265
+ **kwargs,
266
+ ) -> str:
267
+ if isinstance(token_ids, int):
268
+ token_ids = [token_ids]
269
+ if skip_special_tokens:
270
+ token_ids = [i for i in token_ids if i < self.eod_id]
271
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
272
+