File size: 17,130 Bytes
7d508f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
from typing import Dict, Iterable, List, Tuple, Union
import collections
import functools
import glob
import json
import hashlib
import itertools
import logging
import multiprocessing
import os
import pickle
import random
import requests
import sys
import zipfile
import datasets
import numpy as np
import safetensors
import torch
import tqdm
import transformers
from cde.lib.dist import get_num_proc, get_rank
def get_cde_cache_dir() -> str:
script_directory = os.path.normpath(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
os.pardir, os.pardir,
)
)
return os.path.join(script_directory, "data")
def get_cache_location_from_kwargs(**kwargs):
cache_location = os.path.join(
get_cde_cache_dir(), "cluster"
)
os.makedirs(cache_location, exist_ok=True)
return os.path.join(cache_location, md5_hash_kwargs(**kwargs))
def process_qrels_uncached(corpus: datasets.Dataset, qrels: datasets.Dataset) -> Tuple[Dict[str, List[float]], Dict[str, List[str]]]:
qrels_idxs = collections.defaultdict(list)
qrels_scores = collections.defaultdict(list)
corpus_ids = np.array(corpus['_id'])
skipped_qrels = 0
for ex in tqdm.tqdm(qrels, desc='processing qrels', colour='#964B00', leave=False):
#
# example:
# {
# 'query-id': 1,
# 'corpus-id': 'b0680508-2019-04-18T13:48:51Z-00002-000',
# 'score': 2
# }
#
q_id = str(ex['query-id'])
c_idxs = (corpus_ids == str(ex['corpus-id'])).nonzero()[0]
#
assert len(c_idxs) <= 1, f"error - duplicate corpus ID? (found {len(c_idxs)} matches)"
#
if len(c_idxs):
qrels_idxs[q_id].append(c_idxs[0])
qrels_scores[q_id].append(ex['score'])
else:
skipped_qrels += 1
#
if skipped_qrels > 0:
logging.warning(f'Warning: Skipped {skipped_qrels}/{len(qrels)} qrels.')
return qrels_idxs, qrels_scores
def process_qrels(
corpus: datasets.Dataset, qrels: datasets.Dataset,
use_cache: bool = True
) -> Tuple[Dict[str, List[float]], Dict[str, List[str]]]:
dataset_cache_file = '_'.join(
(corpus.cache_files[0]['filename'], qrels.cache_files[0]['filename'])
)
cache_file = strip_extension(dataset_cache_file) + '_processed_qrels.p'
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
if not (use_cache and os.path.exists(cache_file)):
qrels_idxs, qrels_scores = process_qrels_uncached(
corpus=corpus, qrels=qrels
)
if use_cache:
pickle.dump((qrels_idxs, qrels_scores), open(cache_file, 'wb'))
else:
qrels_idxs, qrels_scores = pickle.load(open(cache_file, 'rb'))
return qrels_idxs, qrels_scores
def strip_extension(filename: str) -> str:
"""Strips file extension.
Ex:
>> strip_extension('/root/dir/sub/file.ext')
'/root/dir/sub/file'
"""
return os.path.splitext(filename)[0]
def md5_hash(t: Tuple[str]) -> str:
return hashlib.md5('__'.join(t).encode()).hexdigest()
def md5_hash_kwargs(**kwargs) -> str:
# We ignore special hf args that start with _ like '__cached__setup_devices'.
safe_kwargs = {k: str(v) for k,v in kwargs.items() if not k.startswith('_')}
s = json.dumps(safe_kwargs, sort_keys=True)
return hashlib.md5(s.encode()).hexdigest()
def download_url(url: str, save_path: str, chunk_size: int = 1024):
"""Download url with progress bar using tqdm
https://stackoverflow.com/questions/15644964/python-progress-bar-and-downloads
Args:
url (str): downloadable url
save_path (str): local path to save the downloaded file
chunk_size (int, optional): chunking of files. Defaults to 1024.
"""
r = requests.get(url, stream=True)
total = int(r.headers.get('Content-Length', 0))
with open(save_path, 'wb') as fd, tqdm.tqdm(
desc=save_path,
total=total,
unit='iB',
unit_scale=True,
unit_divisor=chunk_size,
) as bar:
for data in r.iter_content(chunk_size=chunk_size):
size = fd.write(data)
bar.update(size)
def unzip(zip_file: str, out_dir: str):
print("unzipping =>", zip_file)
zip_ = zipfile.ZipFile(zip_file, "r")
zip_.extractall(path=out_dir)
zip_.close()
def download_url_and_unzip(url: str, out_dir: str, chunk_size: int = 1024) -> str:
os.makedirs(out_dir, exist_ok=True)
dataset = url.split("/")[-1]
zip_file = os.path.join(out_dir, dataset)
if not os.path.isfile(zip_file):
logging.info("Downloading {} ...".format(dataset))
download_url(url, zip_file, chunk_size)
if not os.path.isdir(zip_file.replace(".zip", "")):
logging.info("Unzipping {} ...".format(dataset))
unzip(zip_file, out_dir)
return os.path.join(out_dir, dataset.replace(".zip", ""))
def tqdm_if_main_worker(iterable: Iterable, **kwargs) -> Iterable:
if get_rank() == 0:
return tqdm.tqdm(iterable, **kwargs)
else:
return iterable
class ContextualModelConfig(transformers.configuration_utils.PretrainedConfig):
"""We create a dummy configuration class that will just set properties
based on whatever kwargs we pass in.
When this class is initialized (see experiments.py) we pass in the
union of all data, model, and training args, all of which should
get saved to the config json.
"""
def __init__(self, **kwargs):
for key, value in kwargs.items():
try:
json.dumps(value)
setattr(self, key, value)
except TypeError:
# value was not JSON-serializable, skip
continue
super().__init__()
def independent_crop(
input_ids: torch.Tensor, pad_token_id: int,
l1: int = 256, l2: int = 256) -> Tuple[torch.Tensor, torch.Tensor]:
"""Returns two independent crops from input_ids.
Assumes input_ids has a beginning and end token, like
[101, ..., 102, 0, 0, 0].
Args:
input_ids: tensor of IDs
pad_token_id: ID of pad tokens in input_ids
l1: length of span 1, cropped
l2: length of span 2, cropped
Returns:
span1: first crop (of length l1)
span2: second crop (of length l2)
"""
# Count tokens until pad.
if (input_ids == pad_token_id).sum() == 0:
N = len(input_ids)
else:
N = (input_ids == pad_token_id).int().argmax().item()
####
###
##
## Contriever: We use the random cropping data
## augmentation, with documents of 256 tokens and span
## sizes sampled between 5% and 50% of the document
## length
##
###
#####
####### LaPraDor: The maximum lengths set for queries and
####### documents are 64 and 350...
#####
# TODO is this divide-by-two a good idea? (Don't want s1=s2 ever..)
nl1 = min(N//2, l1)
nl2 = min(N//2, l2)
s1_start = random.randint(1, N-nl1)
s2_start = random.randint(1, N-nl2)
s1_idxs = itertools.chain(
[0], range(s1_start, s1_start+nl1), [N-1]
)
s1 = input_ids[torch.tensor(list(s1_idxs))]
s2_idxs = itertools.chain(
[0], range(s2_start, s2_start+nl2), [N-1]
)
s2 = input_ids[torch.tensor(list(s2_idxs))]
return (s1, s2)
def load_dataset_tables(
files: Iterable[str], num_workers: int = 16
) -> Iterable[datasets.table.MemoryMappedTable]:
import concurrent
from multiprocessing import Pool
# num_workers = min(num_workers, len(files))
num_workers = min(32, len(files))
use_threads = True
if use_threads:
pool_cls = concurrent.futures.ThreadPoolExecutor
pool_kwargs = {"max_workers": num_workers}
else:
pool_cls = Pool
pool_kwargs = {"processes": num_workers}
with pool_cls(**pool_kwargs) as pool:
if len(files) > 10:
files = tqdm_if_main_worker(
files,
desc=f"Loading {len(files)} files with {num_workers} workers",
total=len(files),
colour="#ffbd88"
)
result = list(
pool.map(datasets.table.MemoryMappedTable.from_file, files)
)
return result
def datasets_fast_load_from_disk(cache_path: str) -> datasets.Dataset:
logging.info(f"fast_load_from_disk called with path:", cache_path)
dataset_info_path = os.path.join(cache_path, "dataset_info.json")
with open(dataset_info_path, encoding="utf-8") as dataset_info_file:
dataset_info = datasets.DatasetInfo.from_dict(json.load(dataset_info_file))
dataset_state_path = os.path.join(cache_path, "state.json")
with open(dataset_state_path, encoding="utf-8") as state_file:
state = json.load(state_file)
files = glob.glob(os.path.join(cache_path, "data-*.arrow"))
files = sorted(files)
num_workers = get_num_proc()
ds_tables = load_dataset_tables(
files=files,
num_workers=num_workers
)
arrow_table = datasets.table.concat_tables(ds_tables)
split = state["_split"]
split = datasets.splits.Split(split) if split is not None else split
# print("returning dataset")
return datasets.Dataset(
arrow_table=arrow_table,
info=dataset_info,
split=split,
fingerprint=state["_fingerprint"],
)
def tokenize_dataset(
dataset: datasets.Dataset,
tokenizer: transformers.PreTrainedTokenizer,
max_length: int,
text_key: str,
padding_strategy: str
) -> datasets.Dataset:
def tokenize_text(ex: Dict) -> Dict:
tt = tokenizer(
ex[text_key],
max_length=max_length,
truncation=True,
padding=padding_strategy,
)
for k,v in tt.items():
ex[f"{text_key}_{k}"] = v
ex["length"] = [len(tt) for tt in ex[f"{text_key}_input_ids"]]
return ex
# generate unique hash for tokenizer
vocab = tokenizer.vocab
vocab_words = tuple(sorted(vocab.keys(), key=lambda word: vocab[word]))
vocab_hash = md5_hash(vocab_words)
data_fingerprint = '__'.join((
dataset._fingerprint, str(vocab_hash), str(max_length),
text_key, padding_strategy
))
data_fingerprint = md5_hash(data_fingerprint)
dataset = dataset.map(
tokenize_text,
new_fingerprint=data_fingerprint,
batched=True,
load_from_cache_file=True,
)
return dataset
class TensorRunningAverages:
_store_sum: Dict[str, torch.Tensor]
_store_total: Dict[str, torch.Tensor]
def __init__(self):
self._store_sum = {}
self._store_total = {}
def __iter__(self) -> Iterable[str]:
return iter(self._store_sum.keys())
def update(self, key: str, val: Union[int, float, torch.Tensor]) -> None:
if key not in self._store_sum:
self.clear(key)
if isinstance(val, torch.Tensor):
val = val.item() # tensor -> num
self._store_sum[key] += val
self._store_total[key] += 1
def get(self, key: str) -> float:
total = max(self._store_total.get(key).item(), 1.0)
return (self._store_sum[key] / float(total)).item() or 0.0
def clear(self, key: str) -> None:
self._store_sum[key] = torch.tensor(0.0, dtype=torch.float32)
self._store_total[key] = torch.tensor(0, dtype=torch.int32)
def clear_all(self) -> None:
for key in self._store_sum:
self.clear(key)
def get_and_clear_all(self) -> Dict[str, float]:
metrics = {}
for key in self:
metrics[key] = self.get(key)
self.clear(key)
return metrics
def load_embedder_and_tokenizer(name: str) -> Tuple[
transformers.PreTrainedModel,
transformers.PreTrainedTokenizer
]:
if name.startswith("nomic") or (name == "bert-base-uncased"):
from cde.lib.nomic_bert import NomicBertModel
if name.endswith("--from-scratch"):
name = name.replace("--from-scratch", "")
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
model = NomicBertModel._from_config(config)
else:
model = NomicBertModel.from_pretrained(
name, add_pooling_layer=False
)
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
elif name in ["gtr-base", "gtr_base"]:
model = transformers.AutoModel.from_pretrained(
"sentence-transformers/gtr-t5-base"
).encoder
tokenizer = transformers.AutoTokenizer.from_pretrained(
"sentence-transformers/gtr-t5-base"
)
elif name == "pile-t5-base-encoder":
model = transformers.AutoModel.from_pretrained(
"EleutherAI/pile-t5-base"
).encoder
tokenizer = transformers.AutoTokenizer.from_pretrained(
"EleutherAI/pile-t5-base"
)
tokenizer.pad_token = tokenizer.eos_token
elif name == "pile-t5-base-decoder":
model = transformers.AutoModel.from_pretrained(
"EleutherAI/pile-t5-base"
).decoder
tokenizer = transformers.AutoTokenizer.from_pretrained(
"EleutherAI/pile-t5-base"
)
tokenizer.pad_token = tokenizer.eos_token
elif name.startswith("gpt2") or name.startswith("meta-llama") or ("Llama" in name):
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
# torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
# device_map="auto",
)
model.padding_side = "right"
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_eos_token = True
else:
model = transformers.AutoModel.from_pretrained(name, trust_remote_code=True)
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
# if use_bettertransformer:
# from optimum.bettertransformer import BetterTransformer
# model = BetterTransformer.transform(model)
return model, tokenizer
def inputs_for_key(inputs: Dict[str, torch.Tensor], key: str):
key += "_"
return {k.replace(key, ""): v for k,v in inputs.items() if k.startswith(key)}
def load_model_state_dict_from_path(folder: str) -> Dict:
checkpoint_folder = transformers.trainer_utils.get_last_checkpoint(folder)
if checkpoint_folder is None:
raise FileNotFoundError(f"no checkpoint found in {folder}")
WEIGHTS_NAME = "model.safetensors"
weights_path = os.path.join(checkpoint_folder, WEIGHTS_NAME)
if not os.path.exists(weights_path):
raise FileNotFoundError(f"no model weights found at {weights_path}")
return safetensors.torch.load_file(weights_path, device="cpu")
def count_cpus() -> int:
try:
return len(os.sched_getaffinity(0))
except AttributeError:
return multiprocessing.cpu_count()
def shuffle_batches(g: torch.Generator, list_of_tensors: List[torch.Tensor]) -> List[int]:
all_indices = []
for batch_tensor in tqdm_if_main_worker(list_of_tensors, colour="green", desc="Sampler shuffling per-batch"):
rand_perm = torch.randperm(len(batch_tensor), generator=g)
batch_list = batch_tensor[rand_perm].tolist()
all_indices.extend(batch_list)
return all_indices
# def shuffle_batches_multiproc(g: torch.Generator, list_of_tensors: List[torch.Tensor], num_processes: int = 8) -> List[int]:
# all_indices = []
# print(f"Shuffling {len(list_of_tensors)} tensors with {num_processes} workers.")
# pbar = tqdm_if_main_worker(list_of_tensors, colour="orange", desc=f"Sampler shuffling per-batch (nproc={num_processes})")
# pool = multiprocessing.Pool(processes=num_processes)
# chunk_size = len(list_of_tensors) // num_processes
# chunks = [list_of_tensors[i:i + chunk_size] for i in range(0, len(list_of_tensors), chunk_size)]
# worker_func = functools.partial(shuffle_batches, g=g)
# results = pool.map(worker_func, chunks)
# all_indices = []
# for result in results:
# all_indices.extend(result)
# pbar.update()
# return all_indices
def exit_if_running_or_finished_wandb(
project_name: str,
exp_group: str, exp_name: str
) -> None:
print("Checking if experiment is already running...")
import wandb
api = wandb.Api()
running_runs = api.runs(
path="tti-nomic-7",
filters={
"display_name": exp_name,
"state": {"$regex": "Running|Finished"},
"config.exp_group": exp_group,
}
)
print("Found", len(running_runs), f"runs with name {exp_name} and group {exp_group} in {project_name}.")
if len(running_runs) > 0:
print("Exiting because experiment is already running or completed.")
sys.exit(0)
|