File size: 17,130 Bytes
7d508f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
from typing import Dict, Iterable, List, Tuple, Union

import collections
import functools
import glob
import json
import hashlib
import itertools
import logging
import multiprocessing
import os
import pickle
import random
import requests
import sys
import zipfile

import datasets
import numpy as np
import safetensors
import torch
import tqdm
import transformers

from cde.lib.dist import get_num_proc, get_rank


def get_cde_cache_dir() -> str:
    script_directory = os.path.normpath(
        os.path.join(
            os.path.dirname(os.path.abspath(__file__)),
            os.pardir, os.pardir,
        )
    )
    return os.path.join(script_directory, "data")


def get_cache_location_from_kwargs(**kwargs):
    cache_location = os.path.join(
        get_cde_cache_dir(), "cluster"
    )
    os.makedirs(cache_location, exist_ok=True)
    return os.path.join(cache_location, md5_hash_kwargs(**kwargs))


def process_qrels_uncached(corpus: datasets.Dataset, qrels: datasets.Dataset) -> Tuple[Dict[str, List[float]], Dict[str, List[str]]]:
    qrels_idxs = collections.defaultdict(list)
    qrels_scores = collections.defaultdict(list)
    corpus_ids = np.array(corpus['_id'])
    skipped_qrels = 0

    for ex in tqdm.tqdm(qrels, desc='processing qrels', colour='#964B00', leave=False):
        #
        # example:
        # {
        #  'query-id': 1, 
        #  'corpus-id': 'b0680508-2019-04-18T13:48:51Z-00002-000',
        #  'score': 2
        # }
        # 
        q_id = str(ex['query-id'])
        c_idxs = (corpus_ids == str(ex['corpus-id'])).nonzero()[0]
        # 
        assert len(c_idxs) <= 1, f"error - duplicate corpus ID? (found {len(c_idxs)} matches)"
        # 
        if len(c_idxs):
            qrels_idxs[q_id].append(c_idxs[0])
            qrels_scores[q_id].append(ex['score'])
        else:
            skipped_qrels += 1
        #
    
    if skipped_qrels > 0:
        logging.warning(f'Warning: Skipped {skipped_qrels}/{len(qrels)} qrels.')
    
    return qrels_idxs, qrels_scores


def process_qrels(
        corpus: datasets.Dataset, qrels: datasets.Dataset, 
        use_cache: bool = True
    ) -> Tuple[Dict[str, List[float]], Dict[str, List[str]]]:
    dataset_cache_file = '_'.join(
        (corpus.cache_files[0]['filename'], qrels.cache_files[0]['filename'])
    )
    cache_file = strip_extension(dataset_cache_file) + '_processed_qrels.p'
    os.makedirs(os.path.dirname(cache_file), exist_ok=True)

    if not (use_cache and os.path.exists(cache_file)):
        qrels_idxs, qrels_scores = process_qrels_uncached(
            corpus=corpus, qrels=qrels
        )
        if use_cache:
            pickle.dump((qrels_idxs, qrels_scores), open(cache_file, 'wb'))
    else:
        qrels_idxs, qrels_scores = pickle.load(open(cache_file, 'rb'))
    
    return qrels_idxs, qrels_scores


def strip_extension(filename: str) -> str:
    """Strips file extension.

    Ex:
        >> strip_extension('/root/dir/sub/file.ext')
        '/root/dir/sub/file'
    """
    return os.path.splitext(filename)[0]


def md5_hash(t: Tuple[str]) -> str:
    return hashlib.md5('__'.join(t).encode()).hexdigest()


def md5_hash_kwargs(**kwargs) -> str:
    # We ignore special hf args that start with _ like '__cached__setup_devices'.
    safe_kwargs = {k: str(v) for k,v in kwargs.items() if not k.startswith('_')}
    s = json.dumps(safe_kwargs, sort_keys=True)
    return hashlib.md5(s.encode()).hexdigest()

def download_url(url: str, save_path: str, chunk_size: int = 1024):
    """Download url with progress bar using tqdm
    https://stackoverflow.com/questions/15644964/python-progress-bar-and-downloads
    Args:
        url (str): downloadable url
        save_path (str): local path to save the downloaded file
        chunk_size (int, optional): chunking of files. Defaults to 1024.
    """
    r = requests.get(url, stream=True)
    total = int(r.headers.get('Content-Length', 0))
    with open(save_path, 'wb') as fd, tqdm.tqdm(
        desc=save_path,
        total=total,
        unit='iB',
        unit_scale=True,    
        unit_divisor=chunk_size,
    ) as bar:
        for data in r.iter_content(chunk_size=chunk_size):
            size = fd.write(data)
            bar.update(size)


def unzip(zip_file: str, out_dir: str):
    print("unzipping =>", zip_file)
    zip_ = zipfile.ZipFile(zip_file, "r")
    zip_.extractall(path=out_dir)
    zip_.close()


def download_url_and_unzip(url: str, out_dir: str, chunk_size: int = 1024) -> str:
    os.makedirs(out_dir, exist_ok=True)
    dataset = url.split("/")[-1]
    zip_file = os.path.join(out_dir, dataset)
    
    if not os.path.isfile(zip_file):
        logging.info("Downloading {} ...".format(dataset))
        download_url(url, zip_file, chunk_size)
    
    if not os.path.isdir(zip_file.replace(".zip", "")):
        logging.info("Unzipping {} ...".format(dataset))
        unzip(zip_file, out_dir)
    
    return os.path.join(out_dir, dataset.replace(".zip", ""))


def tqdm_if_main_worker(iterable: Iterable, **kwargs) -> Iterable:
    if get_rank() == 0:
        return tqdm.tqdm(iterable, **kwargs)
    else:
        return iterable


class ContextualModelConfig(transformers.configuration_utils.PretrainedConfig):
    """We create a dummy configuration class that will just set properties
    based on whatever kwargs we pass in.

    When this class is initialized (see experiments.py) we pass in the
    union of all data, model, and training args, all of which should
    get saved to the config json.
    """

    def __init__(self, **kwargs):
        for key, value in kwargs.items():
            try:
                json.dumps(value)
                setattr(self, key, value)
            except TypeError:
                # value was not JSON-serializable, skip
                continue
        super().__init__()


def independent_crop(
    input_ids: torch.Tensor, pad_token_id: int,
    l1: int = 256, l2: int = 256) -> Tuple[torch.Tensor, torch.Tensor]:
    """Returns two independent crops from input_ids.
    
    Assumes input_ids has a beginning and end token, like 
        [101, ..., 102, 0, 0, 0].

    Args:
        input_ids: tensor of IDs
        pad_token_id: ID of pad tokens in input_ids
        l1: length of span 1, cropped
        l2: length of span 2, cropped
    Returns:
        span1: first crop (of length l1)
        span2: second crop (of length l2)
    """ 
    # Count tokens until pad.
    if (input_ids == pad_token_id).sum() == 0:
        N = len(input_ids)
    else:
        N = (input_ids == pad_token_id).int().argmax().item()
    
    ####
    ###
    ##
    ## Contriever:  We use the random cropping data
    ## augmentation, with documents of 256 tokens and span 
    ## sizes sampled between 5% and 50% of the document
    ## length
    ##
    ###
    #####
    ####### LaPraDor: The maximum lengths set for queries and
    ####### documents are 64 and 350...
    #####
    # TODO is this divide-by-two a good idea? (Don't want s1=s2 ever..)
    nl1 = min(N//2, l1)
    nl2 = min(N//2, l2)

    s1_start = random.randint(1, N-nl1)
    s2_start = random.randint(1, N-nl2)

    s1_idxs = itertools.chain(
        [0], range(s1_start, s1_start+nl1), [N-1]
    )
    s1 = input_ids[torch.tensor(list(s1_idxs))]
    s2_idxs = itertools.chain(
        [0], range(s2_start, s2_start+nl2), [N-1]
    )
    s2 = input_ids[torch.tensor(list(s2_idxs))]
    return (s1, s2)


def load_dataset_tables(
    files: Iterable[str], num_workers: int = 16
) -> Iterable[datasets.table.MemoryMappedTable]:
    import concurrent
    from multiprocessing import Pool

    # num_workers = min(num_workers, len(files))
    num_workers = min(32, len(files))

    use_threads = True
    if use_threads:
        pool_cls = concurrent.futures.ThreadPoolExecutor
        pool_kwargs = {"max_workers": num_workers}
    else:
        pool_cls = Pool
        pool_kwargs = {"processes": num_workers}
    
    with pool_cls(**pool_kwargs) as pool:
        if len(files) > 10:
            files = tqdm_if_main_worker(
                files,
                desc=f"Loading {len(files)} files with {num_workers} workers",
                total=len(files),
                colour="#ffbd88"
            )
        
        result = list(
            pool.map(datasets.table.MemoryMappedTable.from_file, files)
        )
    return result


def datasets_fast_load_from_disk(cache_path: str) -> datasets.Dataset:
    logging.info(f"fast_load_from_disk called with path:", cache_path)
    dataset_info_path = os.path.join(cache_path, "dataset_info.json")
    with open(dataset_info_path, encoding="utf-8") as dataset_info_file:
        dataset_info = datasets.DatasetInfo.from_dict(json.load(dataset_info_file))

    dataset_state_path = os.path.join(cache_path, "state.json")
    with open(dataset_state_path, encoding="utf-8") as state_file:
        state = json.load(state_file)

    files = glob.glob(os.path.join(cache_path, "data-*.arrow"))
    files = sorted(files)
    num_workers = get_num_proc()
    ds_tables = load_dataset_tables(
        files=files,
        num_workers=num_workers
    )
    arrow_table = datasets.table.concat_tables(ds_tables)

    split = state["_split"]
    split = datasets.splits.Split(split) if split is not None else split

    # print("returning dataset")
    return datasets.Dataset(
        arrow_table=arrow_table,
        info=dataset_info,
        split=split,
        fingerprint=state["_fingerprint"],
    )


def tokenize_dataset(
        dataset: datasets.Dataset,
        tokenizer: transformers.PreTrainedTokenizer,
        max_length: int,
        text_key: str,
        padding_strategy: str
    ) -> datasets.Dataset:
    def tokenize_text(ex: Dict) -> Dict:
        tt = tokenizer(
            ex[text_key],
            max_length=max_length,
            truncation=True,
            padding=padding_strategy,
        )
        for k,v in tt.items():
            ex[f"{text_key}_{k}"] = v
        ex["length"] = [len(tt) for tt in ex[f"{text_key}_input_ids"]]
        return ex

    # generate unique hash for tokenizer
    vocab = tokenizer.vocab
    vocab_words = tuple(sorted(vocab.keys(), key=lambda word: vocab[word]))
    vocab_hash = md5_hash(vocab_words)

    data_fingerprint = '__'.join((
        dataset._fingerprint, str(vocab_hash), str(max_length),
        text_key, padding_strategy
    ))
    data_fingerprint = md5_hash(data_fingerprint)
    dataset = dataset.map(
        tokenize_text,
        new_fingerprint=data_fingerprint,
        batched=True,
        load_from_cache_file=True,
    )
    return dataset


class TensorRunningAverages:
    _store_sum: Dict[str, torch.Tensor]
    _store_total: Dict[str, torch.Tensor]

    def __init__(self):
        self._store_sum = {}
        self._store_total = {}
    
    def __iter__(self) -> Iterable[str]:
        return iter(self._store_sum.keys())

    def update(self, key: str, val: Union[int, float, torch.Tensor]) -> None:
        if key not in self._store_sum:
            self.clear(key)
        if isinstance(val, torch.Tensor):
            val = val.item() # tensor -> num
        self._store_sum[key] += val
        self._store_total[key] += 1

    def get(self, key: str) -> float:
        total = max(self._store_total.get(key).item(), 1.0)
        return (self._store_sum[key] / float(total)).item() or 0.0
    
    def clear(self, key: str) -> None:
        self._store_sum[key] = torch.tensor(0.0, dtype=torch.float32)
        self._store_total[key] = torch.tensor(0, dtype=torch.int32)
    
    def clear_all(self) -> None:
        for key in self._store_sum:
            self.clear(key)

    def get_and_clear_all(self) -> Dict[str, float]:
        metrics = {}
        for key in self:
            metrics[key] = self.get(key)
            self.clear(key)
        return metrics

def load_embedder_and_tokenizer(name: str) -> Tuple[
        transformers.PreTrainedModel, 
        transformers.PreTrainedTokenizer
]:
    if name.startswith("nomic") or (name == "bert-base-uncased"):
        from cde.lib.nomic_bert import NomicBertModel
        if name.endswith("--from-scratch"):
            name = name.replace("--from-scratch", "")
            config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
            model = NomicBertModel._from_config(config)
        else:
            model = NomicBertModel.from_pretrained(
                name, add_pooling_layer=False
            )
        tokenizer = transformers.AutoTokenizer.from_pretrained(name)
    elif name in ["gtr-base", "gtr_base"]:
        model = transformers.AutoModel.from_pretrained(
            "sentence-transformers/gtr-t5-base"
        ).encoder
        tokenizer = transformers.AutoTokenizer.from_pretrained(
            "sentence-transformers/gtr-t5-base"
        )
    elif name == "pile-t5-base-encoder":
        model = transformers.AutoModel.from_pretrained(
            "EleutherAI/pile-t5-base"
        ).encoder
        tokenizer = transformers.AutoTokenizer.from_pretrained(
            "EleutherAI/pile-t5-base"
        )
        tokenizer.pad_token = tokenizer.eos_token
    elif name == "pile-t5-base-decoder":
        model = transformers.AutoModel.from_pretrained(
            "EleutherAI/pile-t5-base"
        ).decoder
        tokenizer = transformers.AutoTokenizer.from_pretrained(
            "EleutherAI/pile-t5-base"
        )
        tokenizer.pad_token = tokenizer.eos_token
    elif name.startswith("gpt2") or name.startswith("meta-llama") or ("Llama" in name):
        model = transformers.AutoModelForCausalLM.from_pretrained(
            name, 
            # torch_dtype=torch.bfloat16,
            attn_implementation="flash_attention_2",
            low_cpu_mem_usage=True,
            # device_map="auto",
        )
        model.padding_side = "right"
        tokenizer = transformers.AutoTokenizer.from_pretrained(name)
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.add_eos_token = True
    else:
        model = transformers.AutoModel.from_pretrained(name, trust_remote_code=True)
        tokenizer = transformers.AutoTokenizer.from_pretrained(name)

        # if use_bettertransformer:
        #     from optimum.bettertransformer import BetterTransformer
        #     model = BetterTransformer.transform(model)
    return model, tokenizer


def inputs_for_key(inputs: Dict[str, torch.Tensor], key: str):
    key += "_"
    return {k.replace(key, ""): v for k,v in inputs.items() if k.startswith(key)}


def load_model_state_dict_from_path(folder: str) -> Dict:
    checkpoint_folder = transformers.trainer_utils.get_last_checkpoint(folder)
    if checkpoint_folder is None:
        raise FileNotFoundError(f"no checkpoint found in {folder}")
    WEIGHTS_NAME = "model.safetensors"
    weights_path = os.path.join(checkpoint_folder, WEIGHTS_NAME)
    if not os.path.exists(weights_path):
        raise FileNotFoundError(f"no model weights found at {weights_path}")
    return safetensors.torch.load_file(weights_path, device="cpu")

def count_cpus() -> int:
    try:
        return len(os.sched_getaffinity(0)) 
    except AttributeError:
        return multiprocessing.cpu_count()


def shuffle_batches(g: torch.Generator, list_of_tensors: List[torch.Tensor]) -> List[int]:
    all_indices = []
    for batch_tensor in tqdm_if_main_worker(list_of_tensors, colour="green", desc="Sampler shuffling per-batch"): 
        rand_perm = torch.randperm(len(batch_tensor), generator=g)
        batch_list = batch_tensor[rand_perm].tolist()
        all_indices.extend(batch_list)
    return all_indices


# def shuffle_batches_multiproc(g: torch.Generator, list_of_tensors: List[torch.Tensor], num_processes: int = 8) -> List[int]:
#     all_indices = []
#     print(f"Shuffling {len(list_of_tensors)} tensors with {num_processes} workers.")
#     pbar = tqdm_if_main_worker(list_of_tensors, colour="orange", desc=f"Sampler shuffling per-batch (nproc={num_processes})")
#     pool = multiprocessing.Pool(processes=num_processes) 
#     chunk_size = len(list_of_tensors) // num_processes
#     chunks = [list_of_tensors[i:i + chunk_size] for i in range(0, len(list_of_tensors), chunk_size)]
#     worker_func = functools.partial(shuffle_batches, g=g)
#     results = pool.map(worker_func, chunks)
#     all_indices = []
#     for result in results:
#         all_indices.extend(result)
#         pbar.update()
#     return all_indices


def exit_if_running_or_finished_wandb(
        project_name: str,
        exp_group: str, exp_name: str
    ) -> None:
    print("Checking if experiment is already running...")
    import wandb

    api = wandb.Api()
    running_runs = api.runs(
        path="tti-nomic-7",
        filters={
            "display_name": exp_name,
            "state": {"$regex": "Running|Finished"},
            "config.exp_group": exp_group,
        }  
    )
    print("Found", len(running_runs), f"runs with name {exp_name} and group {exp_group} in {project_name}.")

    if len(running_runs) > 0:
        print("Exiting because experiment is already running or completed.")
        sys.exit(0)