|
--- |
|
tags: autonlp |
|
language: en |
|
widget: |
|
- text: "I love AutoNLP 🤗" |
|
datasets: |
|
- kSaluja/autonlp-data-tele_red_data_model |
|
co2_eq_emissions: 2.379476355147211 |
|
--- |
|
|
|
# Model Trained Using AutoNLP |
|
|
|
- Problem type: Entity Extraction |
|
- Model ID: 585716433 |
|
- CO2 Emissions (in grams): 2.379476355147211 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.15210922062397003 |
|
- Accuracy: 0.9724770642201835 |
|
- Precision: 0.950836820083682 |
|
- Recall: 0.9625838333921638 |
|
- F1: 0.9566742676723382 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kSaluja/autonlp-tele_red_data_model-585716433 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model = AutoModelForTokenClassification.from_pretrained("kSaluja/autonlp-tele_red_data_model-585716433", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("kSaluja/autonlp-tele_red_data_model-585716433", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoNLP", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |