--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - kSaluja/autonlp-data-tele_red_data_model co2_eq_emissions: 2.379476355147211 --- # Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 585716433 - CO2 Emissions (in grams): 2.379476355147211 ## Validation Metrics - Loss: 0.15210922062397003 - Accuracy: 0.9724770642201835 - Precision: 0.950836820083682 - Recall: 0.9625838333921638 - F1: 0.9566742676723382 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kSaluja/autonlp-tele_red_data_model-585716433 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("kSaluja/autonlp-tele_red_data_model-585716433", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kSaluja/autonlp-tele_red_data_model-585716433", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```