--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ky-finetuned-skindiseaseicthuawei32 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9622508792497069 --- # ky-finetuned-skindiseaseicthuawei32 This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1058 - Accuracy: 0.9623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3894 | 1.0 | 300 | 0.6160 | 0.8061 | | 0.6543 | 2.0 | 600 | 0.4378 | 0.8635 | | 0.471 | 3.0 | 900 | 0.2566 | 0.9161 | | 0.3853 | 4.0 | 1200 | 0.2498 | 0.9135 | | 0.3225 | 5.0 | 1500 | 0.2157 | 0.9290 | | 0.2769 | 6.0 | 1800 | 0.1747 | 0.9407 | | 0.2364 | 7.0 | 2100 | 0.1502 | 0.9487 | | 0.2005 | 8.0 | 2400 | 0.1282 | 0.9547 | | 0.1737 | 9.0 | 2700 | 0.1129 | 0.9597 | | 0.1468 | 10.0 | 3000 | 0.1058 | 0.9623 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0