File size: 1,702 Bytes
dbd568a af45562 dbd568a af45562 bc3a0cc af45562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: cc-by-4.0
tags:
- tiatoolbox
- digital pathology
- histology
- kather
- colorectal
pipeline_tag: image-classification
---
# ResNet50 trained on Kather100K (via TIA Toolbox)
This is a re-hosted version of the model available in the TIA Toolbox model zoo (licensed CC-BY-4.0).
# Reusing the model
Coming soon...
# Dataset
The Kather100K dataset can be found on Zenodo https://zenodo.org/record/1214456.
# References
```bibtex
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
@dataset{kather_jakob_nikolas_2018_1214456,
author = {Kather, Jakob Nikolas and
Halama, Niels and
Marx, Alexander},
title = {{100,000 histological images of human colorectal
cancer and healthy tissue}},
month = apr,
year = 2018,
publisher = {Zenodo},
version = {v0.1},
doi = {10.5281/zenodo.1214456},
url = {https://doi.org/10.5281/zenodo.1214456}
}
@article{pocock2022tiatoolbox,
title={TIAToolbox as an end-to-end library for advanced tissue image analytics},
author={Pocock, Johnathan and Graham, Simon and Vu, Quoc Dang and Jahanifar, Mostafa and Deshpande, Srijay and Hadjigeorghiou, Giorgos and Shephard, Adam and Bashir, Raja Muhammad Saad and Bilal, Mohsin and Lu, Wenqi and others},
journal={Communications medicine},
volume={2},
number={1},
pages={120},
year={2022},
publisher={Nature Publishing Group UK London}
}
``` |