--- license: cc0-1.0 datasets: - kairaamilanii/cyberbullying-indonesia language: - id metrics: - accuracy - confusion_matrix base_model: - indolem/indobertweet-base-uncased pipeline_tag: text-classification --- This model is based on a BERT model trained with a few bullying detection datasets. It is trained exclusively in the Indonesian language. ```python from transformers import BertTokenizer, AutoModelForSequenceClassification model_path = 'kairaamilanii/IndoBERT-Bullying-Classifier' tokenizer = BertTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) text = "KOK JELEK BANGET SIH" # Example text for prediction inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits, dim=-1).item() print(f"Predicted class: {predicted_class}") if predicted_class == 1: print("Prediction: Bullying") else: print("Prediction: Non-bullying") ``` example output: ```python [{'Predicted class': 1, 'Prediction': Bullying}] ```