--- license: unknown datasets: - PolyAI/minds14 language: - en metrics: - accuracy - precision - recall - f1 base_model: - FacebookAI/roberta-base pipeline_tag: text-classification model-index: - name: roBERTa-minds14-en-classifier results: - task: type: text-classification dataset: name: minds-14 type: en metrics: - name: Accuracy type: Accuracy value: 0.9724 - task: type: text-classification dataset: name: minds-14 type: en metrics: - name: Precision type: Precision value: 0.9736 - task: type: text-classification dataset: name: minds-14 type: en metrics: - name: Recall type: Recall value: 0.9724 - task: type: text-classification dataset: name: minds-14 type: en metrics: - name: f1 type: f1 value: 0.9724 --- this model based on roberta model that trained with minds-14 dataset, only trained in english version : enUS + enAU + enGB the intent_classes available: ```python intent_classes = { 0: 'abroad', 1: 'address', 2: 'app_error', 3: 'atm_limit', 4: 'balance', 5: 'business_loan', 6: 'card_issues', 7: 'cash_deposit', 8: 'direct_debit', 9: 'freeze', 10: 'high_value_payment', 11: 'joint_account', 12: 'latest_transactions', 13: 'pay_bill' } ``` example of using model to classify intent: ```python >>> from transformers import pipeline model = "/content/RoBERTa-mind14-classifier-intent" classifier = pipeline("text-classification", model=model) text = "hi what's the maximum amount of money I can withdraw from" # Replace with your desired input text prediction = classifier(text) prediction ``` example output: ```python [{'label': 'LABEL_3', 'score': 0.9933607578277588}] ```