kairaamilanii
commited on
Commit
•
8823fca
1
Parent(s):
7331e4b
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,81 @@
|
|
1 |
-
---
|
2 |
-
license: unknown
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: unknown
|
3 |
+
datasets:
|
4 |
+
- PolyAI/minds14
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- wer
|
10 |
+
- f1
|
11 |
+
- bleu
|
12 |
+
base_model:
|
13 |
+
- openai/whisper-tiny
|
14 |
+
pipeline_tag: automatic-speech-recognition
|
15 |
+
|
16 |
+
model-index:
|
17 |
+
- name: whisper-mind14-enUS
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
type: ASR
|
21 |
+
dataset:
|
22 |
+
name: minds-14
|
23 |
+
type: enUS
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: Accuracy
|
27 |
+
value: 62.25
|
28 |
+
- task:
|
29 |
+
type: ASR
|
30 |
+
dataset:
|
31 |
+
name: minds-14
|
32 |
+
type: enUS
|
33 |
+
metrics:
|
34 |
+
- name: wer
|
35 |
+
type: wer
|
36 |
+
value: 0.38%
|
37 |
+
- task:
|
38 |
+
type: ASR
|
39 |
+
dataset:
|
40 |
+
name: minds-14
|
41 |
+
type: enUS
|
42 |
+
metrics:
|
43 |
+
- name: f1
|
44 |
+
type: f1
|
45 |
+
value: 0.6722
|
46 |
+
- task:
|
47 |
+
type: ASR
|
48 |
+
dataset:
|
49 |
+
name: minds-14
|
50 |
+
type: enUS
|
51 |
+
metrics:
|
52 |
+
- name: bleu
|
53 |
+
type: bleu
|
54 |
+
value: 0.0235
|
55 |
+
---
|
56 |
+
|
57 |
+
this model based on whisper-tiny model that trained with minds-14 dataset, only trained in english version : enUS
|
58 |
+
|
59 |
+
example of using model to classify intent:
|
60 |
+
|
61 |
+
```python
|
62 |
+
>>> from transformers import pipeline
|
63 |
+
|
64 |
+
model_id = "kairaamilanii/whisper-mind14-enUS"
|
65 |
+
|
66 |
+
transcriber = pipeline(
|
67 |
+
"automatic-speech-recognition",
|
68 |
+
model=model_id,
|
69 |
+
chunk_length_s=30,
|
70 |
+
device="cuda:0" if torch.cuda.is_available() else "cpu",
|
71 |
+
)
|
72 |
+
|
73 |
+
audio_file = "/content/602b9a90963e11ccd901cbd0.wav" # Replace with your audio file path
|
74 |
+
|
75 |
+
text = transcriber(audio_file)
|
76 |
+
text
|
77 |
+
```
|
78 |
+
example output:
|
79 |
+
```python
|
80 |
+
{'text': "hello i was looking at my recent transactions and i saw that there's a payment that i didn't make will you be able to stop this thank you"}
|
81 |
+
```
|