--- license: unknown datasets: - PolyAI/minds14 language: - en metrics: - accuracy - wer - f1 - bleu base_model: - openai/whisper-tiny pipeline_tag: automatic-speech-recognition model-index: - name: whisper-mind14-enUS results: - task: type: ASR dataset: name: minds-14 type: enUS metrics: - name: Accuracy type: Accuracy value: 62.25 - task: type: ASR dataset: name: minds-14 type: enUS metrics: - name: wer type: wer value: 0.38% - task: type: ASR dataset: name: minds-14 type: enUS metrics: - name: f1 type: f1 value: 0.6722 - task: type: ASR dataset: name: minds-14 type: enUS metrics: - name: bleu type: bleu value: 0.0235 --- this model based on whisper-tiny model that trained with minds-14 dataset, only trained in english version : enUS example of using model to classify intent: ```python >>> from transformers import pipeline model_id = "kairaamilanii/whisper-mind14-enUS" transcriber = pipeline( "automatic-speech-recognition", model=model_id, chunk_length_s=30, device="cuda:0" if torch.cuda.is_available() else "cpu", ) audio_file = "/content/602b9a90963e11ccd901cbd0.wav" # Replace with your audio file path text = transcriber(audio_file) text ``` example output: ```python {'text': "hello i was looking at my recent transactions and i saw that there's a payment that i didn't make will you be able to stop this thank you"} ```