File size: 1,961 Bytes
04cba7e
 
 
 
 
917c384
 
04cba7e
 
 
 
 
 
 
 
 
 
 
917c384
415bc54
 
04cba7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917c384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04cba7e
 
 
917c384
 
04cba7e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-ssv2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ssv2-finetuned-traffic-dataset-mae
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ssv2-finetuned-traffic-dataset-mae

This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-finetuned-ssv2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1259
- Accuracy: 0.41

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 608

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0309        | 0.12  | 76   | 0.3008          | 0.9130   |
| 0.0002        | 1.12  | 152  | 2.1030          | 0.6667   |
| 0.0001        | 2.12  | 228  | 1.8458          | 0.7101   |
| 0.0           | 3.12  | 304  | 1.5200          | 0.7391   |
| 0.0001        | 4.12  | 380  | 1.4569          | 0.7536   |
| 0.0           | 5.12  | 456  | 0.3941          | 0.9275   |
| 0.0001        | 6.12  | 532  | 0.9658          | 0.8696   |
| 0.0001        | 7.12  | 608  | 0.9836          | 0.8406   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2