File size: 1,961 Bytes
04cba7e 917c384 04cba7e 917c384 415bc54 04cba7e 917c384 04cba7e 917c384 04cba7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-ssv2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ssv2-finetuned-traffic-dataset-mae
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-ssv2-finetuned-traffic-dataset-mae
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-finetuned-ssv2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1259
- Accuracy: 0.41
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 608
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0309 | 0.12 | 76 | 0.3008 | 0.9130 |
| 0.0002 | 1.12 | 152 | 2.1030 | 0.6667 |
| 0.0001 | 2.12 | 228 | 1.8458 | 0.7101 |
| 0.0 | 3.12 | 304 | 1.5200 | 0.7391 |
| 0.0001 | 4.12 | 380 | 1.4569 | 0.7536 |
| 0.0 | 5.12 | 456 | 0.3941 | 0.9275 |
| 0.0001 | 6.12 | 532 | 0.9658 | 0.8696 |
| 0.0001 | 7.12 | 608 | 0.9836 | 0.8406 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2
|