File size: 5,474 Bytes
c18b721 9d4d402 c18b721 fa18a17 60603bc 13ce165 4f5d096 c18b721 a962639 c18b721 fa18a17 c18b721 fa18a17 c18b721 9d4d402 c18b721 fa18a17 c18b721 60603bc 4f5d096 958fcc3 720d5d2 c18b721 13ce165 63b0414 13ce165 cd2efd1 13ce165 c18b721 d2b2be7 4d6910b 2e7d318 d2b2be7 63b0414 cd2efd1 d2b2be7 13ce165 fa18a17 13ce165 c18b721 38321a8 c18b721 d2b2be7 9d4d402 c18b721 13ce165 c18b721 63b0414 c18b721 d2b2be7 3b27ab8 d2b2be7 c18b721 08633e0 c18b721 513b119 c18b721 845b45b c18b721 845b45b 9d4d402 c18b721 513b119 c18b721 3b27ab8 c18b721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
#! /usr/bin/env bash
function image_classifier() {
abcli_image_classifier $@
}
function abcli_image_classifier() {
local task=$(abcli_unpack_keyword "$1" help)
if [ "$task" == "help" ] ; then
abcli_help_line "$abcli_cli_name image_classifier describe object_1 [model=object/*saved]" \
"describe saved/object model object_1."
abcli_help_line "$abcli_cli_name image_classifier install" \
"install image_classifier."
abcli_help_line "$abcli_cli_name image_classifier predict data_1 [name_1] [data=filename/*object/url,model=object/*saved]" \
"run fashion_mnist saved/object model name_1 predict on filename/object/url data_1."
abcli_help_line "$abcli_cli_name image_classifier save [name_1] [object_1] [force]" \
"[force] save image_classifier [in object_1] [as name_1]."
abcli_help_line "$abcli_cli_name image_classifier train object_1" \
"train image_classifier on data object_1."
if [ "$(abcli_keyword_is $2 verbose)" == true ] ; then
python3 -m image_classifier --help
fi
return
fi
if [[ $(type -t abcli_image_classifier_$task) == "function" ]] ; then
abcli_image_classifier_$task ${@:2}
return
fi
if [ "$task" == "describe" ] ; then
local model_name=$2
local options=$3
local model_source=$(abcli_option "$options" "model" saved)
local model_path=$(abcli_huggingface get_model_path image-classifier "$model_name" "$options")
if [ "$model_source" == "object" ] ; then
local model_object=$(python3 -c "print('$model_path'.split('/')[-1])")
abcli_download object $model_object
fi
python3 -m image_classifier \
describe \
--model_path $model_path \
${@:4}
return
fi
if [ "$task" == "install" ] ; then
conda install -y -c anaconda seaborn
return
fi
if [ "$task" == "save" ] ; then
abcli_huggingface save \
image-classifier \
$(abcli_clarify_arg "$2" image-classifier) \
${@:3}
return
fi
abcli_log_error "-fashion_mnist: image-classifier: $task: command not found."
}
function abcli_image_classifier_predict() {
local data_object=$(abcli_clarify_object "$1")
local model_name=$2
local options=$3
local data_source=$(abcli_option "$options" "data" object)
local model_source=$(abcli_option "$options" "model" saved)
if [ "$(abcli_keyword_is $data_object validate)" == true ] ; then
if [ "$data_source" == "object" ] ; then
abcli_log_error "-imge-classifier: predict: validation object not found."
return
fi
local data_object="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Claquettes-peto.jpg/1024px-Claquettes-peto.jpg"
local data_source="url"
fi
if [ "$data_source" == "object" ] ; then
abcli_download object $data_object
fi
local model_path=$(abcli_huggingface get_model_path image-classifier "$model_name" "$options")
if [ "$model_source" == "object" ] ; then
local model_object=$(python3 -c "print('$model_path'.split('/')[-1])")
abcli_download object $model_object
fi
abcli_log "image_classifier($model_path).predict($data_object): $options"
if [ ! -f "$abcli_object_root/$data_object/test_images.pyndarray" ] && [ "$data_source" == "object" ] ; then
python3 -m image_classifier \
preprocess \
--infer_annotation 0 \
--model_path $model_path \
--objects $abcli_object_root/$data_object \
--output_path $abcli_object_root/$data_object \
--purpose predict \
${@:4}
fi
if [ "$data_source" == "object" ] ; then
cp -v $abcli_object_root/$data_object/*.pyndarray .
cp -v $model_path/image_classifier/model/class_names.json .
python3 -m image_classifier \
predict \
--data_path $abcli_object_root/$data_object \
--model_path $model_path \
--output_path $abcli_object_path \
${@:4}
abcli_tag set . image_classifier,predict
else
local is_url=0
if [ "$data_source" == "url" ] ; then
local is_url=1
fi
python3 -m image_classifier \
predict_image \
--data_path $data_object \
--is_url $is_url \
--model_path $model_path \
--output_path $abcli_object_path \
${@:4}
fi
}
function abcli_image_classifier_train() {
local data_object=$(abcli_clarify_object "$1" $abcli_object_name)
abcli_download object $data_object
local options=$2
local do_color=$(abcli_option_int "$options" "color" 0)
local do_convnet=$(abcli_option_int "$options" "convnet" 0)
local do_validate=$(abcli_option_int "$options" "validate" 0)
local extra_args=""
if [ "$do_validate" == 1 ] ; then
local extra_args="--epochs 2"
fi
abcli_log "image_classifier.train($data_object): $options"
python3 -m image_classifier \
train \
--color $do_color \
--convnet $do_convnet \
--data_path $abcli_object_root/$data_object \
--model_path $abcli_object_path \
$extra_args \
${@:3}
abcli_tag set . image_classifier,train
} |