File size: 3,999 Bytes
c18b721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import argparse
import cv2
from functools import reduce
import matplotlib.pyplot as plt
import numpy as np
import os
import os.path
import tensorflow as tf
from tqdm import *
import re
import time
from . import *
from abcli import objects
from abcli import cache
from abcli import file
from abcli.tasks import host
from abcli import graphics
from abcli.options import Options
from abcli import path
from abcli.storage import instance as storage
from abcli import string
from abcli.plugins import tags
import abcli.logging
import logging
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser(name)
parser.add_argument(
"task",
type=str,
default="",
help="describe,eval,ingest,predict,preprocess,train",
)
parser.add_argument(
"--objects",
type=str,
default="",
)
parser.add_argument(
"--color",
type=int,
default=0,
help="0/1",
)
parser.add_argument(
"--convnet",
type=int,
default=1,
help="0/1",
)
parser.add_argument(
"--count",
type=int,
default=-1,
)
parser.add_argument(
"--data_path",
type=str,
default="",
)
parser.add_argument(
"--epochs",
default=10,
type=int,
help="",
)
parser.add_argument(
"--exclude",
type=str,
default="",
)
parser.add_argument(
"--include",
type=str,
default="",
)
parser.add_argument(
"--infer_annotation",
type=int,
default=1,
help="0/1",
)
parser.add_argument(
"--input_path",
type=str,
default="",
)
parser.add_argument(
"--model_path",
type=str,
default="",
)
parser.add_argument(
"--negative",
type=int,
default=0,
help="0/1",
)
parser.add_argument(
"--non_empty",
type=int,
default=0,
help="0/1",
)
parser.add_argument(
"--output_path",
type=str,
default="",
)
parser.add_argument(
"--positive",
type=int,
default=0,
help="0/1",
)
parser.add_argument(
"--purpose",
type=str,
default="",
help="predict/train",
)
parser.add_argument(
"--test_size",
type=float,
default=1.0 / 6,
)
parser.add_argument(
"--window_size",
type=int,
default=28,
)
args = parser.parse_args()
success = False
if args.task == "describe":
image_classifier().load(args.model_path)
success = True
elif args.task == "eval":
success = eval(args.input_path, args.output_path)
elif args.task == "ingest":
success = ingest(
args.include,
args.output_path,
{
"count": args.count,
"exclude": args.exclude,
"negative": args.negative,
"non_empty": args.non_empty,
"positive": args.positive,
"test_size": args.test_size,
},
)
elif args.task == "predict":
classifier = image_classifier()
if classifier.load(args.model_path):
success, test_images = file.load(
"{}/test_images.pyndarray".format(args.data_path)
)
if success:
logger.info("test_images: {}".format(string.pretty_size_of_matrix(test_images)))
_, test_labels = file.load(
"{}/test_labels.pyndarray".format(args.data_path),
civilized=True,
default=None,
)
test_images = test_images / 255.0
success = classifier.predict(test_images, test_labels, args.output_path)
elif args.task == "preprocess":
success = preprocess(
args.output_path,
{
"objects": args.objects,
"infer_annotation": args.infer_annotation,
"purpose": args.purpose,
"window_size": args.window_size,
},
)
elif args.task == "train":
classifier = image_classifier()
success = classifier.train(
args.data_path,
args.model_path,
{"color": args.color, "convnet": args.convnet, "epochs": args.epochs},
)
else:
logger.error(f"-{name}: {args.task}: command not found.")
if not success:
logger.error(f"-{name}: {args.task}: failed.")
|