kamangir
validating fashion_mnist train - kamangir/bolt#692
30af577
raw
history blame
14.8 kB
import cv2
from .plot import *
from abcli import file
from abcli import path
from abcli import string
from abcli.plugins import graphics
from abcli.tasks import host
from abcli.tasks import objects
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tqdm import *
import time
from abcli.logging import crash_report
import abcli.logging
import logging
logger = logging.getLogger(__name__)
default_window_size = 28
class Image_Classifier(object):
def __init__(self):
self.class_names = []
self.model = None
self.params = {
"convnet": False,
"object_name": "",
"model_size": "",
"window_size": default_window_size,
}
def load(self, model_path):
success, self.class_names = file.load_json(
f"{model_path}/image_classifier/model/class_names.json"
)
if not success:
return False
success, self.params = file.load_json(
f"{model_path}/image_classifier/model/params.json"
)
if not success:
return False
self.params["object_name"] = path.name(model_path)
self.params["model_size"] = file.size(f"{model_path}/image_classifier/model")
try:
self.model = tf.keras.models.load_model(
f"{model_path}/image_classifier/model"
)
except:
from abcli.logging import crash_report
crash_report("image_classifier.load({}) failed".format(model_path))
return False
logger.info(
"{}.load({}x{}:{}): {}{} class(es): {}".format(
self.__class__.__name__,
self.params["window_size"],
self.params["window_size"],
path.name(model_path),
"convnet - " if self.params["convnet"] else "",
len(self.class_names),
",".join(self.class_names),
)
)
self.model.summary()
return True
def predict(self, test_images, test_labels, output_path="", page_count=-1):
logger.info(
"image_classifier.predict({},{}){}".format(
string.pretty_shape_of_matrix(test_images),
string.pretty_shape_of_matrix(test_labels),
"-> {}".format(output_path) if output_path else "",
)
)
prediction_time = time.time()
predictions = self.model.predict(test_images)
prediction_time = (time.time() - prediction_time) / test_images.shape[0]
logger.info(
"image_classifier.predict(): {} / frame".format(
string.pretty_duration(
prediction_time,
include_ms=True,
)
)
)
if not output_path:
return True
if not file.save(
f"{output_path}/image_classifier/predictions.pyndarray", predictions
):
return False
if test_labels is not None:
from sklearn.metrics import confusion_matrix
logger.info("image_classifier.predict(): rendering confusion_matrix...")
cm = confusion_matrix(
test_labels,
np.argmax(predictions, axis=1),
labels=range(len(self.class_names)),
# normalize="true",
)
cm = cm / np.sum(cm, axis=1)[:, np.newaxis]
logger.debug("confusion_matrix: {}".format(cm))
if not file.save(
f"{output_path}/image_classifier/model/confusion_matrix.pyndarray", cm
):
return False
if not graphics.render_confusion_matrix(
cm,
self.class_names,
f"{output_path}/image_classifier/model/confusion_matrix.jpg",
header=[
" | ".join(host.signature()),
" | ".join(objects.signature()),
],
footer=self.signature(prediction_time),
):
return False
if test_labels is not None:
logger.info(
"image_classifier.predict(): rendering test_labels distribution..."
)
# accepting the risk that if test_labels does not contain any of the largest index
# this function will return False.
distribution = np.bincount(test_labels)
distribution = distribution / np.sum(distribution)
if not graphics.render_distribution(
distribution,
self.class_names,
f"{output_path}/image_classifier/model/label_distribution.jpg",
header=[
" | ".join(host.signature()),
" | ".join(objects.signature()),
],
footer=self.signature(prediction_time),
title="distribution of test_labels",
):
return False
max_index = test_images.shape[0]
if page_count != -1:
max_index = min(24 * page_count, max_index)
logger.info(
f"image_classifier.predict(): rendering {max_index / 24:.0f} sheet(s)..."
)
for index in tqdm(range(0, max_index, 24)):
self.render(
predictions[index : index + 24],
None if test_labels is None else test_labels[index : index + 24],
test_images[index : index + 24],
"{}/image_classifier/prediction/{:05d}.jpg".format(
output_path,
int(index / 24),
),
prediction_time,
)
return True
def predict_frame(self, frame):
prediction_time = time.time()
try:
prediction = self.model.predict(
np.expand_dims(
cv2.resize(
frame, (self.params["window_size"], self.params["window_size"])
)
/ 255.0,
axis=0,
)
)
except:
from abcli.logging import crash_report
crash_report("image_classifier.predict_frame() crashed.")
return False, -1
prediction_time = time.time() - prediction_time
output = np.argmax(prediction)
logger.info(
"image_classifier.prediction: [{}] -> {} - took {}".format(
",".join(
[
"{}:{:.2f}".format(class_name, value)
for class_name, value in zip(self.class_names, prediction[0])
]
),
self.class_names[output],
string.pretty_duration(
prediction_time,
include_ms=True,
short=True,
),
)
)
return True, output
def render(
self,
predictions,
test_labels,
test_images,
output_filename="",
prediction_time=0,
):
num_rows = 4
num_cols = 6
num_images = num_rows * num_cols
plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows))
for i in range(min(num_images, len(predictions))):
plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
plot_image(i, predictions[i], test_labels, test_images, self.class_names)
plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
if output_filename:
filename_ = file.auxiliary("prediction", "png")
plt.savefig(filename_)
plt.close()
success, image = file.load_image(filename_)
if success:
image = graphics.add_signature(
image,
[" | ".join(host.signature()), " | ".join(objects.signature())],
self.signature(prediction_time),
)
file.save_image(output_filename, image)
def save(self, model_path):
model_filename = f"{model_path}/image_classifier/model"
if not file.prepare_for_saving(model_filename):
return False
try:
self.model.save(model_filename)
logger.info(f"image_classifier.model -> {model_filename}")
except:
crash_report(f"-image_classifier: save({model_path}): failed.")
return False
self.params["object_name"] = path.name(model_path)
self.params["model_size"] = file.size(f"{model_path}/image_classifier/model")
if not file.save_json(
f"{model_path}/image_classifier/model/class_names.json",
self.class_names,
):
return False
if not file.save_json(
f"{model_path}/image_classifier/model/params.json",
self.params,
):
return False
return True
def signature(self, prediction_time):
return [
" | ".join(
[
"image_classifier",
self.params["object_name"],
string.pretty_bytes(self.params["model_size"])
if self.params["model_size"]
else "",
string.pretty_shape(self.input_shape),
"/".join(string.shorten(self.class_names)),
"took {} / frame".format(
string.pretty_duration(
prediction_time,
include_ms=True,
largest=True,
short=True,
)
),
]
)
]
@staticmethod
def train(data_path, model_path, color=False, convnet=True, epochs=10):
classifier = Image_Classifier()
classifier.params["convnet"] = convnet
logger.info(
"image_classifier.train({}) -{}> {}".format(
data_path,
"convnet-" if classifier.params["convnet"] else "",
model_path,
)
)
success, train_images = file.load(f"{data_path}/train_images.pyndarray")
if success:
success, train_labels = file.load(f"{data_path}/train_labels.pyndarray")
if success:
success, test_images = file.load(f"{data_path}/test_images.pyndarray")
if success:
success, test_labels = file.load(f"{data_path}/test_labels.pyndarray")
if success:
success, classifier.class_names = file.load_json(
f"{data_path}/class_names.json"
)
if not success:
return False
from tensorflow.keras.utils import to_categorical
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
window_size = train_images.shape[1]
input_shape = (
(window_size, window_size, 3)
if color
else (window_size, window_size, 1)
if convnet
else (window_size, window_size)
)
logger.info(f"input:{string.pretty_shape(input_shape)}")
if convnet and not color:
train_images = np.expand_dims(train_images, axis=3)
test_images = np.expand_dims(test_images, axis=3)
for name, thing in zip(
"train_images,train_labels,test_images,test_labels".split(","),
[train_images, train_labels, test_images, test_labels],
):
logger.info("{}: {}".format(name, string.pretty_shape_of_matrix(thing)))
logger.info(
f"{len(classifier.class_names)} class(es): {', '.join(classifier.class_names)}"
)
train_images = train_images / 255.0
test_images = test_images / 255.0
if convnet:
# https://medium.com/swlh/convolutional-neural-networks-for-multiclass-image-classification-a-beginners-guide-to-6dbc09fabbd
classifier.model = tf.keras.Sequential(
[
tf.keras.layers.Conv2D(
filters=48,
kernel_size=3,
activation="relu",
input_shape=input_shape,
),
tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(
filters=48, kernel_size=3, activation="relu"
),
tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(
filters=32, kernel_size=3, activation="relu"
),
tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(len(classifier.class_names)),
tf.keras.layers.Activation("softmax"),
]
)
else:
# https://github.com/gato/tensor-on-pi/blob/master/Convolutional%20Neural%20Network%20digit%20predictor.ipynb
classifier.model = tf.keras.Sequential(
[
tf.keras.layers.Flatten(input_shape=input_shape),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(len(classifier.class_names)),
tf.keras.layers.Activation("softmax"),
]
)
classifier.model.summary()
classifier.model.compile(
optimizer="adam",
loss=tf.keras.losses.categorical_crossentropy,
metrics=["accuracy"],
)
classifier.model.fit(train_images, train_labels, epochs=epochs)
test_accuracy = float(
classifier.model.evaluate(test_images, test_labels, verbose=2)[1]
)
logger.info("test accuracy: {:.4f}".format(test_accuracy))
if not file.save_json(
f"{model_path}/image_classifier/model/eval.json",
{"metrics": {"test_accuracy": test_accuracy}},
):
return False
if not classifier.save(model_path):
return False
return classifier.predict(
test_images,
np.argmax(test_labels, axis=1),
model_path,
page_count=10,
)
@property
def input_shape(self):
return self.model.layers[0].input_shape[1:] if self.model.layers else []