from abcli import string | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import abcli.logging | |
import logging | |
logger = logging.getLogger(__name__) | |
def plot_image(i, predictions_array, true_label, image, class_names): | |
plt.grid(False) | |
plt.xticks([]) | |
plt.yticks([]) | |
plt.imshow(image[i], cmap=plt.cm.binary) | |
predicted_label = np.argmax(predictions_array) | |
if true_label is None: | |
color = "black" | |
elif predicted_label == true_label[i]: | |
color = "blue" | |
else: | |
color = "red" | |
plt.xlabel( | |
"{} {:2.0f}%{}".format( | |
string.shorten(class_names[predicted_label]), | |
100 * np.max(predictions_array), | |
"" | |
if true_label is None | |
else " ({})".format(string.shorten(class_names[true_label[i]])), | |
), | |
color=color, | |
) | |
def plot_value_array(i, predictions_array, true_label): | |
plt.grid(False) | |
plt.xticks(range(len(predictions_array))) | |
plt.yticks([]) | |
handle = plt.bar(range(len(predictions_array)), predictions_array, color="#777777") | |
plt.ylim([0, 1]) | |
predicted_label = np.argmax(predictions_array) | |
handle[predicted_label].set_color("green") | |
if true_label is not None: | |
handle[true_label[i]].set_color("blue") | |