image-classifier / abcli /image_classifier.sh
kamangir
validating fashion_mnist train - kamangir/bolt#692
eb26a46
raw
history blame
3.43 kB
#! /usr/bin/env bash
function image_classifier() {
abcli_image_classifier $@
}
function abcli_image_classifier() {
local task=$(abcli_unpack_keyword "$1" help)
if [ "$task" == "help" ] ; then
abcli_help_line "$abcli_cli_name image_classifier describe object_1" \
"describe model object_1."
abcli_help_line "$abcli_cli_name image_classifier install" \
"install image_classifier."
abcli_help_line "$abcli_cli_name image_classifier predict object_1 object_2" \
"run image_classifier model object_1 predict on data object_2."
abcli_help_line "$abcli_cli_name image_classifier train object_1" \
"train image_classifier on data object_1."
if [ "$(abcli_keyword_is $2 verbose)" == true ] ; then
python3 -m fashion_mnist.image_classifier --help
fi
return
fi
if [[ $(type -t abcli_image_classifier_$task) == "function" ]] ; then
abcli_image_classifier_$task ${@:2}
return
fi
if [ "$task" == "describe" ] ; then
local model_object_name="$2"
abcli_download $model_object_name
python3 -m image_classifier \
describe \
--model_path $abcli_object_root/$model_object_name \
${@:3}
return
fi
if [ "$task" == "install" ] ; then
conda install -y -c anaconda seaborn
return
fi
abcli_log_error "-fashion_mnist: image-classifier: $task: command not found."
}
function abcli_image_classifier_predict() {
local model_object=$(abcli_clarify_object "$1")
local data_object=$(abcli_clarify_object "$2")
abcli_download object $model_object
abcli_download object $data_object
abcli_log "image_classifier($model_object).predict($data_object)"
if [ ! -f "$abcli_object_root/$data_object/test_images.pyndarray" ] ; then
python3 -m image_classifier \
preprocess \
--infer_annotation 0 \
--model_path $abcli_object_root/$model_object \
--objects $abcli_object_root/$data_object \
--output_path $abcli_object_root/$data_object \
--purpose predict \
${@:3}
fi
cp -v ../$data_object/*.pyndarray .
cp -v ../$model_object/image_classifier/model/class_names.json .
python3 -m image_classifier \
predict \
--data_path $abcli_object_root/$data_object \
--model_path $abcli_object_root/$model_object \
--output_path $abcli_object_path \
${@:4}
abcli_tag set . image_classifier,predict
}
function abcli_image_classifier_train() {
local data_object=$(abcli_clarify_object "$1" $abcli_object_name)
abcli_download object $data_object
local options=$2
local do_color=$(abcli_option_int "$options" "color" 0)
local do_convnet=$(abcli_option_int "$options" "convnet" 0)
local do_validate=$(abcli_option_int "$options" "validate" 0)
local extra_args=""
if [ "$do_validate" == 1 ] ; then
local extra_args="--epochs 2"
fi
abcli_log "image_classifier.train($data_object): $options"
python3 -m image_classifier \
train \
--color $do_color \
--convnet $do_convnet \
--data_path $abcli_object_root/$data_object \
--model_path $abcli_object_path \
$extra_args \
${@:3}
abcli_tag set . image_classifier,train
}