|
#! /usr/bin/env bash |
|
|
|
function image_classifier() { |
|
abcli_image_classifier $@ |
|
} |
|
|
|
function abcli_image_classifier() { |
|
local task=$(abcli_unpack_keyword "$1" help) |
|
|
|
if [ "$task" == "help" ] ; then |
|
abcli_help_line "$abcli_cli_name image_classifier install" \ |
|
"install image_classifier." |
|
abcli_help_line "$abcli_cli_name image_classifier list [object_1] [model=object/*saved]" \ |
|
"list [saved/object model object_1]." |
|
abcli_help_line "$abcli_cli_name image_classifier predict data_1 [name_1] [data=filename/*object/url,model=object/*saved]" \ |
|
"run fashion_mnist saved/object model name_1 predict on filename/object/url data_1." |
|
abcli_help_line "$abcli_cli_name image_classifier save [name_1] [object_1] [force]" \ |
|
"[force] save image_classifier [in object_1] [as name_1]." |
|
abcli_help_line "$abcli_cli_name image_classifier train object_1" \ |
|
"train image_classifier on data object_1." |
|
|
|
if [ "$(abcli_keyword_is $2 verbose)" == true ] ; then |
|
python3 -m image_classifier --help |
|
fi |
|
return |
|
fi |
|
|
|
if [[ $(type -t abcli_image_classifier_$task) == "function" ]] ; then |
|
abcli_image_classifier_$task ${@:2} |
|
return |
|
fi |
|
|
|
if [ "$task" == "install" ] ; then |
|
conda install -y -c anaconda seaborn |
|
return |
|
fi |
|
|
|
if [ "$task" == "list" ] ; then |
|
local model_name=$2 |
|
|
|
if [ -z "$model_name" ] ; then |
|
ls $abcli_path_git/image-classifier/saved_model |
|
return |
|
fi |
|
|
|
local options=$3 |
|
local model_source=$(abcli_option "$options" "model" saved) |
|
local do_browse=$(abcli_option_get_unpacked "$options" "browser" 0) |
|
|
|
local model_path=$(abcli_huggingface get_model_path image-classifier "$model_name" "$options") |
|
|
|
if [ "$model_source" == "object" ] ; then |
|
local model_object=$(python3 -c "print('$model_path'.split('/')[-1])") |
|
abcli_download object $model_object |
|
fi |
|
|
|
python3 -m image_classifier \ |
|
list \ |
|
--model_path $model_path \ |
|
${@:4} |
|
|
|
if [ "$do_browse" == 1 ] && [ "$model_source" == "object" ] ; then |
|
abcli_browser $model_object |
|
fi |
|
|
|
return |
|
fi |
|
|
|
if [ "$task" == "save" ] ; then |
|
abcli_huggingface save \ |
|
image-classifier \ |
|
$(abcli_clarify_arg "$2" image-classifier) \ |
|
${@:3} |
|
return |
|
fi |
|
|
|
abcli_log_error "-fashion_mnist: image-classifier: $task: command not found." |
|
} |
|
|
|
function abcli_image_classifier_predict() { |
|
local data_object=$(abcli_clarify_object "$1") |
|
|
|
local model_name=$2 |
|
|
|
local options=$3 |
|
local data_source=$(abcli_option "$options" "data" object) |
|
local model_source=$(abcli_option "$options" "model" saved) |
|
|
|
if [ "$(abcli_keyword_is $data_object validate)" == true ] ; then |
|
if [ "$data_source" == "object" ] ; then |
|
abcli_log_error "-imge-classifier: predict: validation object not found." |
|
return |
|
fi |
|
|
|
local data_object="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Claquettes-peto.jpg/1024px-Claquettes-peto.jpg" |
|
local data_source="url" |
|
fi |
|
|
|
if [ "$data_source" == "object" ] ; then |
|
abcli_download object $data_object |
|
fi |
|
|
|
|
|
local model_path=$(abcli_huggingface get_model_path image-classifier "$model_name" "$options") |
|
|
|
if [ "$model_source" == "object" ] ; then |
|
local model_object=$(python3 -c "print('$model_path'.split('/')[-1])") |
|
abcli_download object $model_object |
|
fi |
|
|
|
abcli_log "image_classifier($model_path).predict($data_object): $options" |
|
|
|
if [ ! -f "$abcli_object_root/$data_object/test_images.pyndarray" ] && [ "$data_source" == "object" ] ; then |
|
python3 -m image_classifier \ |
|
preprocess \ |
|
--infer_annotation 0 \ |
|
--model_path $model_path \ |
|
--objects $abcli_object_root/$data_object \ |
|
--output_path $abcli_object_root/$data_object \ |
|
--purpose predict \ |
|
${@:4} |
|
fi |
|
|
|
if [ "$data_source" == "object" ] ; then |
|
cp -v $abcli_object_root/$data_object/*.pyndarray . |
|
cp -v $model_path/image_classifier/model/class_names.json . |
|
|
|
python3 -m image_classifier \ |
|
predict \ |
|
--data_path $abcli_object_root/$data_object \ |
|
--model_path $model_path \ |
|
--output_path $abcli_object_path \ |
|
${@:4} |
|
|
|
abcli_tag set . image_classifier,predict |
|
else |
|
local is_url=0 |
|
if [ "$data_source" == "url" ] ; then |
|
local is_url=1 |
|
fi |
|
|
|
python3 -m image_classifier \ |
|
predict_image \ |
|
--data_path $data_object \ |
|
--is_url $is_url \ |
|
--model_path $model_path \ |
|
--output_path $abcli_object_path \ |
|
${@:4} |
|
fi |
|
} |
|
|
|
function abcli_image_classifier_train() { |
|
local data_object=$(abcli_clarify_object "$1" $abcli_object_name) |
|
|
|
abcli_download object $data_object |
|
|
|
local options=$2 |
|
local do_color=$(abcli_option_int "$options" "color" 0) |
|
local do_convnet=$(abcli_option_int "$options" "convnet" 0) |
|
local do_validate=$(abcli_option_int "$options" "validate" 0) |
|
|
|
local extra_args="" |
|
if [ "$do_validate" == 1 ] ; then |
|
local extra_args="--epochs 2" |
|
fi |
|
|
|
abcli_log "image_classifier.train($data_object): $options" |
|
|
|
python3 -m image_classifier \ |
|
train \ |
|
--color $do_color \ |
|
--convnet $do_convnet \ |
|
--data_path $abcli_object_root/$data_object \ |
|
--model_path $abcli_object_path \ |
|
$extra_args \ |
|
${@:3} |
|
|
|
abcli_tag set . image_classifier,train |
|
} |