kamangir commited on
Commit
08b815a
1 Parent(s): 67dfd4a

validating fashion_mnist train - kamangir/bolt#689

Browse files
image_classifier/__init__.py CHANGED
@@ -1,5 +1,5 @@
1
  name = "image_classifier"
2
 
3
- version = "1.1.49"
4
 
5
  description = "fashion-mnist + hugging-face + awesome-bash-cli"
 
1
  name = "image_classifier"
2
 
3
+ version = "1.1.51"
4
 
5
  description = "fashion-mnist + hugging-face + awesome-bash-cli"
image_classifier/__main__.py CHANGED
@@ -129,7 +129,7 @@ elif args.task == "predict":
129
  success, test_images = file.load(f"{args.data_path}/test_images.pyndarray")
130
 
131
  if success:
132
- logger.info(f"test_images: {string.pretty_size_of_matrix(test_images)}")
133
 
134
  _, test_labels = file.load(
135
  "{}/test_labels.pyndarray".format(args.data_path),
 
129
  success, test_images = file.load(f"{args.data_path}/test_images.pyndarray")
130
 
131
  if success:
132
+ logger.info(f"test_images: {string.pretty_shape_of_matrix(test_images)}")
133
 
134
  _, test_labels = file.load(
135
  "{}/test_labels.pyndarray".format(args.data_path),
image_classifier/classes.py CHANGED
@@ -67,8 +67,8 @@ class Image_Classifier(object):
67
  def predict(self, test_images, test_labels, output_path="", page_count=-1):
68
  logger.info(
69
  "image_classifier.predict({},{}){}".format(
70
- string.pretty_size_of_matrix(test_images),
71
- string.pretty_size_of_matrix(test_labels),
72
  "-> {}".format(output_path) if output_path else "",
73
  )
74
  )
@@ -332,7 +332,7 @@ class Image_Classifier(object):
332
  "train_images,train_labels,test_images,test_labels".split(","),
333
  [train_images, train_labels, test_images, test_labels],
334
  ):
335
- logger.info("{}: {}".format(name, string.pretty_size_of_matrix(thing)))
336
  logger.info(
337
  f"{len(classifier.class_names)} class(es): {', '.join(classifier.class_names)}"
338
  )
 
67
  def predict(self, test_images, test_labels, output_path="", page_count=-1):
68
  logger.info(
69
  "image_classifier.predict({},{}){}".format(
70
+ string.pretty_shape_of_matrix(test_images),
71
+ string.pretty_shape_of_matrix(test_labels),
72
  "-> {}".format(output_path) if output_path else "",
73
  )
74
  )
 
332
  "train_images,train_labels,test_images,test_labels".split(","),
333
  [train_images, train_labels, test_images, test_labels],
334
  ):
335
+ logger.info("{}: {}".format(name, string.pretty_shape_of_matrix(thing)))
336
  logger.info(
337
  f"{len(classifier.class_names)} class(es): {', '.join(classifier.class_names)}"
338
  )
image_classifier/fashion_mnist/ingest.py CHANGED
@@ -31,7 +31,7 @@ def ingest(output_path):
31
  [train_images, train_labels, test_images, test_labels],
32
  ):
33
  if file.save(os.path.join(output_path, f"{name}.pyndarray"), thing):
34
- logger.info(f"ingested {name}: {string.pretty_size_of_matrix(thing)}")
35
  else:
36
  success = False
37
 
 
31
  [train_images, train_labels, test_images, test_labels],
32
  ):
33
  if file.save(os.path.join(output_path, f"{name}.pyndarray"), thing):
34
+ logger.info(f"ingested {name}: {string.pretty_shape_of_matrix(thing)}")
35
  else:
36
  success = False
37
 
image_classifier/funcs.py CHANGED
@@ -19,7 +19,7 @@ def eval(input_path, output_path):
19
  if success:
20
  logger.info(
21
  "groundtruth: {} - {}".format(
22
- string.pretty_size_of_matrix(ground_truth),
23
  ",".join([str(value) for value in ground_truth[:10]] + ["..."]),
24
  )
25
  )
@@ -29,7 +29,7 @@ def eval(input_path, output_path):
29
  predictions = np.argmax(predictions, axis=1).astype(np.uint8)
30
  logger.info(
31
  "predictions: {} - {}".format(
32
- string.pretty_size_of_matrix(predictions),
33
  ",".join([str(value) for value in predictions[:10]] + ["..."]),
34
  )
35
  )
@@ -129,7 +129,7 @@ def preprocess(
129
  error_count += 1
130
  logger.info(
131
  "tensor: {}{}".format(
132
- string.pretty_size_of_matrix(tensor),
133
  " {} error(s)".format(error_count) if error_count else "",
134
  )
135
  )
@@ -164,17 +164,19 @@ def preprocess(
164
  )
165
  )
166
  logger.info(
167
- "tensor_train: {}".format(string.pretty_size_of_matrix(tensor_train))
 
 
 
168
  )
169
- logger.info("tensor_test: {}".format(string.pretty_size_of_matrix(tensor_test)))
170
  logger.info(
171
  "annotations_train: {}".format(
172
- string.pretty_size_of_matrix(annotations_train)
173
  )
174
  )
175
  logger.info(
176
  "annotations_test: {}".format(
177
- string.pretty_size_of_matrix(annotations_test)
178
  )
179
  )
180
 
 
19
  if success:
20
  logger.info(
21
  "groundtruth: {} - {}".format(
22
+ string.pretty_shape_of_matrix(ground_truth),
23
  ",".join([str(value) for value in ground_truth[:10]] + ["..."]),
24
  )
25
  )
 
29
  predictions = np.argmax(predictions, axis=1).astype(np.uint8)
30
  logger.info(
31
  "predictions: {} - {}".format(
32
+ string.pretty_shape_of_matrix(predictions),
33
  ",".join([str(value) for value in predictions[:10]] + ["..."]),
34
  )
35
  )
 
129
  error_count += 1
130
  logger.info(
131
  "tensor: {}{}".format(
132
+ string.pretty_shape_of_matrix(tensor),
133
  " {} error(s)".format(error_count) if error_count else "",
134
  )
135
  )
 
164
  )
165
  )
166
  logger.info(
167
+ "tensor_train: {}".format(string.pretty_shape_of_matrix(tensor_train))
168
+ )
169
+ logger.info(
170
+ "tensor_test: {}".format(string.pretty_shape_of_matrix(tensor_test))
171
  )
 
172
  logger.info(
173
  "annotations_train: {}".format(
174
+ string.pretty_shape_of_matrix(annotations_train)
175
  )
176
  )
177
  logger.info(
178
  "annotations_test: {}".format(
179
+ string.pretty_shape_of_matrix(annotations_test)
180
  )
181
  )
182