kamangir
commited on
Commit
·
56964c4
1
Parent(s):
a856235
validating single image predict for fashion_mnist - kamangir/bolt#692
Browse files- image_classifier/__init__.py +1 -1
- image_classifier/__main__.py +18 -2
- image_classifier/classes.py +6 -6
image_classifier/__init__.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
name = "image_classifier"
|
| 2 |
|
| 3 |
-
version = "1.1.
|
| 4 |
|
| 5 |
description = "fashion-mnist + hugging-face + awesome-bash-cli"
|
|
|
|
| 1 |
name = "image_classifier"
|
| 2 |
|
| 3 |
+
version = "1.1.156"
|
| 4 |
|
| 5 |
description = "fashion-mnist + hugging-face + awesome-bash-cli"
|
image_classifier/__main__.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import argparse
|
|
|
|
| 2 |
from . import *
|
| 3 |
from .classes import *
|
| 4 |
from .funcs import *
|
|
@@ -108,7 +109,7 @@ elif args.task == "predict":
|
|
| 108 |
default=None,
|
| 109 |
)
|
| 110 |
|
| 111 |
-
success = classifier.predict(
|
| 112 |
test_images / 255.0,
|
| 113 |
test_labels,
|
| 114 |
args.output_path,
|
|
@@ -132,10 +133,25 @@ elif args.task == "predict_image":
|
|
| 132 |
success, image = file.load_image(image_filename)
|
| 133 |
|
| 134 |
if success:
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
image / 255.0,
|
| 137 |
output_path=args.output_path,
|
| 138 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
elif args.task == "preprocess":
|
| 140 |
success = preprocess(
|
| 141 |
args.output_path,
|
|
|
|
| 1 |
import argparse
|
| 2 |
+
import cv2
|
| 3 |
from . import *
|
| 4 |
from .classes import *
|
| 5 |
from .funcs import *
|
|
|
|
| 109 |
default=None,
|
| 110 |
)
|
| 111 |
|
| 112 |
+
success, prediction = classifier.predict(
|
| 113 |
test_images / 255.0,
|
| 114 |
test_labels,
|
| 115 |
args.output_path,
|
|
|
|
| 133 |
success, image = file.load_image(image_filename)
|
| 134 |
|
| 135 |
if success:
|
| 136 |
+
image = cv2.resize(
|
| 137 |
+
image, (classifier.params["window_size"], classifier.params["window_size"])
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
if not classifier.params["color"]:
|
| 141 |
+
image = np.mean(image, axis=2)
|
| 142 |
+
|
| 143 |
+
image = np.expand_dims(image, axis=0)
|
| 144 |
+
|
| 145 |
+
success, prediction = classifier.predict(
|
| 146 |
image / 255.0,
|
| 147 |
output_path=args.output_path,
|
| 148 |
)
|
| 149 |
+
|
| 150 |
+
if success:
|
| 151 |
+
index = np.argmax(prediction)
|
| 152 |
+
logger.info(
|
| 153 |
+
f"prediction: {classifier.class_names[index]} - {prediction[0][index]:.2f}"
|
| 154 |
+
)
|
| 155 |
elif args.task == "preprocess":
|
| 156 |
success = preprocess(
|
| 157 |
args.output_path,
|
image_classifier/classes.py
CHANGED
|
@@ -102,12 +102,12 @@ class Image_Classifier(object):
|
|
| 102 |
)
|
| 103 |
|
| 104 |
if not output_path:
|
| 105 |
-
return True
|
| 106 |
|
| 107 |
if not file.save(
|
| 108 |
f"{output_path}/image_classifier/predictions.pyndarray", predictions
|
| 109 |
):
|
| 110 |
-
return False
|
| 111 |
|
| 112 |
if test_labels is not None:
|
| 113 |
from sklearn.metrics import confusion_matrix
|
|
@@ -126,7 +126,7 @@ class Image_Classifier(object):
|
|
| 126 |
if not file.save(
|
| 127 |
f"{output_path}/image_classifier/model/confusion_matrix.pyndarray", cm
|
| 128 |
):
|
| 129 |
-
return False
|
| 130 |
|
| 131 |
if not graphics.render_confusion_matrix(
|
| 132 |
cm,
|
|
@@ -138,7 +138,7 @@ class Image_Classifier(object):
|
|
| 138 |
],
|
| 139 |
footer=self.signature(prediction_time),
|
| 140 |
):
|
| 141 |
-
return False
|
| 142 |
|
| 143 |
if test_labels is not None:
|
| 144 |
logger.info(
|
|
@@ -161,7 +161,7 @@ class Image_Classifier(object):
|
|
| 161 |
footer=self.signature(prediction_time),
|
| 162 |
title="distribution of test_labels",
|
| 163 |
):
|
| 164 |
-
return False
|
| 165 |
|
| 166 |
max_index = test_images.shape[0]
|
| 167 |
if page_count != -1:
|
|
@@ -181,7 +181,7 @@ class Image_Classifier(object):
|
|
| 181 |
prediction_time,
|
| 182 |
)
|
| 183 |
|
| 184 |
-
return True
|
| 185 |
|
| 186 |
def predict_frame(self, frame):
|
| 187 |
prediction_time = time.time()
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
if not output_path:
|
| 105 |
+
return True, predictions
|
| 106 |
|
| 107 |
if not file.save(
|
| 108 |
f"{output_path}/image_classifier/predictions.pyndarray", predictions
|
| 109 |
):
|
| 110 |
+
return False, predictions
|
| 111 |
|
| 112 |
if test_labels is not None:
|
| 113 |
from sklearn.metrics import confusion_matrix
|
|
|
|
| 126 |
if not file.save(
|
| 127 |
f"{output_path}/image_classifier/model/confusion_matrix.pyndarray", cm
|
| 128 |
):
|
| 129 |
+
return False, predictions
|
| 130 |
|
| 131 |
if not graphics.render_confusion_matrix(
|
| 132 |
cm,
|
|
|
|
| 138 |
],
|
| 139 |
footer=self.signature(prediction_time),
|
| 140 |
):
|
| 141 |
+
return False, predictions
|
| 142 |
|
| 143 |
if test_labels is not None:
|
| 144 |
logger.info(
|
|
|
|
| 161 |
footer=self.signature(prediction_time),
|
| 162 |
title="distribution of test_labels",
|
| 163 |
):
|
| 164 |
+
return False, predictions
|
| 165 |
|
| 166 |
max_index = test_images.shape[0]
|
| 167 |
if page_count != -1:
|
|
|
|
| 181 |
prediction_time,
|
| 182 |
)
|
| 183 |
|
| 184 |
+
return True, predictions
|
| 185 |
|
| 186 |
def predict_frame(self, frame):
|
| 187 |
prediction_time = time.time()
|