#! /usr/bin/env bash function fashion_mnist() { abcli_fashion_mnist $@ } function abcli_fashion_mnist() { local task=$(abcli_unpack_keyword $1 help) if [ $task == "help" ] ; then abcli_help_line "$abcli_cli_name fashion_mnist ingest" \ "ingest fashion_mnist data." abcli_help_line "$abcli_cli_name fashion_mnist predict object_1 [name_1] [object]" \ "run fashion_mnist saved/object model name_1 predict on object_1." abcli_help_line "$abcli_cli_name fashion_mnist save [name_1] [object_1] [force]" \ "[force] save fashion_mnist [in object_1] as name_1." abcli_help_line "$abcli_cli_name fashion_mnist train [validate]" \ "train fashion_mnist [for validation]." if [ "$(abcli_keyword_is $2 verbose)" == true ] ; then python3 -m image_classifier.fashion_mnist --help fi return fi if [ "$task" == "ingest" ] ; then python3 -m image_classifier.fashion_mnist \ ingest \ --output_path $abcli_object_path \ ${@:2} abcli_tag set . fashion_mnist return fi if [ "$task" == "predict" ] ; then abcli_huggingface predict \ image-classifier \ $2 \ $(abcli_clarify_arg "$3" fashion-mnist) \ ${@:4} return fi if [ "$task" == "save" ] ; then abcli_huggingface save \ image-classifier \ $(abcli_clarify_arg "$2" fashion-mnist) \ ${@:3} return fi if [ "$task" == "train" ] ; then local model_object=$abcli_object_name local options=$2 local do_validate=$(abcli_option_get_unpacked "$options" "validate" 0) abcli_select - ~trail abcli_fashion_mnist ingest local data_object=$abcli_object_name abcli_log "fashion_mnist.train($data_object): $options" abcli_select $model_object ~trail abcli_image_classifier_train \ $data_object \ ~color,~convnet,validate=$do_validate \ ${@:3} abcli_tag set . fashion_mnist return fi abcli_log_error "-fashion_mnist: $task: command not found." }