#! /usr/bin/env bash function image_classifier() { abcli_image_classifier $@ } function abcli_image_classifier() { local task=$(abcli_unpack_keyword "$1" help) if [ "$task" == "help" ] ; then abcli_help_line "$abcli_cli_name image_classifier describe object_1" \ "describe model object_1." abcli_help_line "$abcli_cli_name image_classifier install" \ "install image_classifier." abcli_help_line "$abcli_cli_name image_classifier predict data_1 [name_1] [data=filename/*object/url,model=object/*saved]" \ "run fashion_mnist saved/object model name_1 predict on filename/object/url data_1." abcli_help_line "$abcli_cli_name image_classifier save [name_1] [object_1] [force]" \ "[force] save image_classifier [in object_1] [as name_1]." abcli_help_line "$abcli_cli_name image_classifier train object_1" \ "train image_classifier on data object_1." if [ "$(abcli_keyword_is $2 verbose)" == true ] ; then python3 -m image_classifier --help fi return fi if [[ $(type -t abcli_image_classifier_$task) == "function" ]] ; then abcli_image_classifier_$task ${@:2} return fi if [ "$task" == "describe" ] ; then local model_object_name="$2" abcli_download $model_object_name python3 -m image_classifier \ describe \ --model_path $abcli_object_root/$model_object_name \ ${@:3} return fi if [ "$task" == "install" ] ; then conda install -y -c anaconda seaborn return fi if [ "$task" == "save" ] ; then abcli_huggingface save \ image-classifier \ $(abcli_clarify_arg "$2" image-classifier) \ ${@:3} return fi abcli_log_error "-fashion_mnist: image-classifier: $task: command not found." } function abcli_image_classifier_predict() { # Args # $1: data_1: data for prediction # $2: name_1: model name # $3: options: data=filename/*object/url,model=object/*saved local data_object=$(abcli_clarify_object "$1") local model_name=$2 local options=$3 local model_source=$(abcli_option "$options" "model" saved) local model_path=$(abcli_huggingface get_model_path image-classifier "$model_name" "$options") abcli_download object $data_object if [ "$model_source" == "object" ] ; then local model_object=TBD abcli_download object $model_object fi abcli_log "image_classifier($model_path).predict($data_object): $options" if [ ! -f "$abcli_object_root/$data_object/test_images.pyndarray" ] ; then python3 -m image_classifier \ preprocess \ --infer_annotation 0 \ --model_path $model_path \ --objects $abcli_object_root/$data_object \ --output_path $abcli_object_root/$data_object \ --purpose predict \ ${@:4} fi cp -v $abcli_object_root/$data_object/*.pyndarray . cp -v $model_path/image_classifier/model/class_names.json . python3 -m image_classifier \ predict \ --data_path $abcli_object_root/$data_object \ --model_path $model_path \ --output_path $abcli_object_path \ ${@:4} abcli_tag set . image_classifier,predict } function abcli_image_classifier_train() { local data_object=$(abcli_clarify_object "$1" $abcli_object_name) abcli_download object $data_object local options=$2 local do_color=$(abcli_option_int "$options" "color" 0) local do_convnet=$(abcli_option_int "$options" "convnet" 0) local do_validate=$(abcli_option_int "$options" "validate" 0) local extra_args="" if [ "$do_validate" == 1 ] ; then local extra_args="--epochs 2" fi abcli_log "image_classifier.train($data_object): $options" python3 -m image_classifier \ train \ --color $do_color \ --convnet $do_convnet \ --data_path $abcli_object_root/$data_object \ --model_path $abcli_object_path \ $extra_args \ ${@:3} abcli_tag set . image_classifier,train }