from abcli import string import matplotlib.pyplot as plt import numpy as np import abcli.logging import logging logger = logging.getLogger(__name__) def plot_image(i, predictions_array, true_label, image, class_names): plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(image[i], cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if true_label is None: color = "black" elif predicted_label == true_label[i]: color = "blue" else: color = "red" plt.xlabel( "{} {:2.0f}%{}".format( string.shorten(class_names[predicted_label]), 100 * np.max(predictions_array), "" if true_label is None else " ({})".format(string.shorten(class_names[true_label[i]])), ), color=color, ) def plot_value_array(i, predictions_array, true_label): plt.grid(False) plt.xticks(range(len(predictions_array))) plt.yticks([]) handle = plt.bar(range(len(predictions_array)), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) handle[predicted_label].set_color("green") if true_label is not None: handle[true_label[i]].set_color("blue")