#! /usr/bin/env bash function image_classifier() { abcli_image_classifier $@ } function abcli_image_classifier() { local task=$(abcli_unpack_keyword "$1" help) if [ "$task" == "help" ] ; then abcli_help_line "$abcli_cli_name image_classifier install" \ "install image_classifier." abcli_help_line "$abcli_cli_name image_classifier list [object_1] [model=object/*saved]" \ "list [saved/object model object_1]." abcli_help_line "$abcli_cli_name image_classifier predict data_1 [name_1] [data=filename/*object/url,model=object/*saved]" \ "run fashion_mnist saved/object model name_1 predict on filename/object/url data_1." abcli_help_line "$abcli_cli_name image_classifier save [name_1] [object_1] [force]" \ "[force] save image_classifier [in object_1] [as name_1]." abcli_help_line "$abcli_cli_name image_classifier train object_1" \ "train image_classifier on data object_1." if [ "$(abcli_keyword_is $2 verbose)" == true ] ; then python3 -m image_classifier --help fi return fi if [[ $(type -t abcli_image_classifier_$task) == "function" ]] ; then abcli_image_classifier_$task ${@:2} return fi if [ "$task" == "install" ] ; then conda install -y -c anaconda seaborn return fi if [ "$task" == "list" ] ; then local model_name=$2 if [ -z "$model_name" ] ; then ls $abcli_path_git/image-classifier/saved_model return fi local options=$3 local model_source=$(abcli_option "$options" "model" saved) local model_path=$(abcli_huggingface get_model_path image-classifier "$model_name" "$options") if [ "$model_source" == "object" ] ; then local model_object=$(python3 -c "print('$model_path'.split('/')[-1])") abcli_download object $model_object fi python3 -m image_classifier \ list \ --model_path $model_path \ ${@:4} return fi if [ "$task" == "save" ] ; then abcli_huggingface save \ image-classifier \ $(abcli_clarify_arg "$2" image-classifier) \ ${@:3} return fi abcli_log_error "-fashion_mnist: image-classifier: $task: command not found." } function abcli_image_classifier_predict() { local data_object=$(abcli_clarify_object "$1") local model_name=$2 local options=$3 local data_source=$(abcli_option "$options" "data" object) local model_source=$(abcli_option "$options" "model" saved) if [ "$(abcli_keyword_is $data_object validate)" == true ] ; then if [ "$data_source" == "object" ] ; then abcli_log_error "-imge-classifier: predict: validation object not found." return fi local data_object="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Claquettes-peto.jpg/1024px-Claquettes-peto.jpg" local data_source="url" fi if [ "$data_source" == "object" ] ; then abcli_download object $data_object fi local model_path=$(abcli_huggingface get_model_path image-classifier "$model_name" "$options") if [ "$model_source" == "object" ] ; then local model_object=$(python3 -c "print('$model_path'.split('/')[-1])") abcli_download object $model_object fi abcli_log "image_classifier($model_path).predict($data_object): $options" if [ ! -f "$abcli_object_root/$data_object/test_images.pyndarray" ] && [ "$data_source" == "object" ] ; then python3 -m image_classifier \ preprocess \ --infer_annotation 0 \ --model_path $model_path \ --objects $abcli_object_root/$data_object \ --output_path $abcli_object_root/$data_object \ --purpose predict \ ${@:4} fi if [ "$data_source" == "object" ] ; then cp -v $abcli_object_root/$data_object/*.pyndarray . cp -v $model_path/image_classifier/model/class_names.json . python3 -m image_classifier \ predict \ --data_path $abcli_object_root/$data_object \ --model_path $model_path \ --output_path $abcli_object_path \ ${@:4} abcli_tag set . image_classifier,predict else local is_url=0 if [ "$data_source" == "url" ] ; then local is_url=1 fi python3 -m image_classifier \ predict_image \ --data_path $data_object \ --is_url $is_url \ --model_path $model_path \ --output_path $abcli_object_path \ ${@:4} fi } function abcli_image_classifier_train() { local data_object=$(abcli_clarify_object "$1" $abcli_object_name) abcli_download object $data_object local options=$2 local do_color=$(abcli_option_int "$options" "color" 0) local do_convnet=$(abcli_option_int "$options" "convnet" 0) local do_validate=$(abcli_option_int "$options" "validate" 0) local extra_args="" if [ "$do_validate" == 1 ] ; then local extra_args="--epochs 2" fi abcli_log "image_classifier.train($data_object): $options" python3 -m image_classifier \ train \ --color $do_color \ --convnet $do_convnet \ --data_path $abcli_object_root/$data_object \ --model_path $abcli_object_path \ $extra_args \ ${@:3} abcli_tag set . image_classifier,train }