from . import * from abcli import file from abcli import string import cv2 import numpy as np import os.path import abcli.logging import logging logger = logging.getLogger(__name__) def eval(input_path, output_path): from sklearn.metrics import accuracy_score report = {"accuracy": None} success, ground_truth = file.load(f"{input_path}/test_labels.pyndarray") if success: logger.info( "groundtruth: {} - {}".format( string.pretty_size_of_matrix(ground_truth), ",".join([str(value) for value in ground_truth[:10]] + ["..."]), ) ) success, predictions = file.load(f"{input_path}/predictions.pyndarray") if success: predictions = np.argmax(predictions, axis=1).astype(np.uint8) logger.info( "predictions: {} - {}".format( string.pretty_size_of_matrix(predictions), ",".join([str(value) for value in predictions[:10]] + ["..."]), ) ) report["accuracy"] = accuracy_score(predictions, ground_truth) logger.info( "image_classifier.eval({}->{}): {:.2f}%".format( input_path, output_path, 100 * report["accuracy"] ) ) return file.save_json(os.path.join(output_path, "evaluation_report.json"), report) def preprocess( output_path, objects="", infer_annotation=True, purpose="predict", test_size=1.0 / 6, window_size=28, ): if objects: logger.info( "image_classifier.preprocess({}{})->{} - {}x{} - for {}".format( ",".join(objects), " + annotation" if infer_annotation else "", output_path, window_size, window_size, purpose, ) ) annotations = [] list_of_images = [] for index, object in enumerate(objects): list_of_images_ = [ "{}/Data/{}/camera.jpg".format(object, frame) for frame in objects.list_of_frames(object) ] annotations += len(list_of_images_) * [index] list_of_images += list_of_images_ annotations = np.array(annotations) if infer_annotation else [] else: logger.info( "image_classifier.preprocess({}) - {}x{} - for {}".format( output_path, window_size, window_size, purpose, ) ) list_of_images = [ "{}/Data/{}/camera.jpg".format(output_path, frame) for frame in objects.list_of_frames(output_path) ] annotations = np.array( file.load_json( f"{output_path}/annotations.json".format(), civilized=True, default=None, )[1] ).astype(np.uint8) if len(annotations) and len(list_of_images) != len(annotations): logger.error( f"-{name}: preprocess: mismatch between frame and annotation counts: {len(list_of_images):,g} != {len(annotations):,g}" ) return False logger.info("{:,} frame(s)".format(len(list_of_images))) tensor = np.zeros( (len(list_of_images), window_size, window_size, 3), dtype=np.uint8, ) error_count = 0 for index, filename in enumerate(list_of_images): logger.info("+= {}".format(filename)) success_, image = file.load_image(filename) if success_: try: tensor[index, :, :, :] = cv2.resize(image, (window_size, window_size)) except: from abcli.logging import crash_report crash_report("image_classifier.preprocess() failed") success_ = False if not success_: error_count += 1 logger.info( "tensor: {}{}".format( string.pretty_size_of_matrix(tensor), " {} error(s)".format(error_count) if error_count else "", ) ) success = False if purpose == "predict": if not file.save("{}/test_images.pyndarray".format(output_path), tensor): return False if len(annotations): if not file.save( "{}/test_labels.pyndarray".format(output_path), annotations ): return False success = True elif purpose == "train": if not len(annotations): logger.error(f"-{name}: preprocess: annotations are not provided.") return False from sklearn.model_selection import train_test_split ( tensor_train, tensor_test, annotations_train, annotations_test, ) = train_test_split(tensor, annotations, test_size=test_size) logger.info( "test-train split: {:.0f}%-{:.0f}% ".format( len(annotations_test) / len(annotations) * 100, len(annotations_train) / len(annotations) * 100, ) ) logger.info( "tensor_train: {}".format(string.pretty_size_of_matrix(tensor_train)) ) logger.info("tensor_test: {}".format(string.pretty_size_of_matrix(tensor_test))) logger.info( "annotations_train: {}".format( string.pretty_size_of_matrix(annotations_train) ) ) logger.info( "annotations_test: {}".format( string.pretty_size_of_matrix(annotations_test) ) ) success = ( file.save("{}/train_images.pyndarray".format(output_path), tensor_train) and file.save("{}/test_images.pyndarray".format(output_path), tensor_test) and file.save( "{}/train_labels.pyndarray".format(output_path), annotations_train ) and file.save( "{}/test_labels.pyndarray".format(output_path), annotations_test ) ) else: logger.error(f"-{name}: preprocess: {purpose}: purpose not found.") return success