File size: 13,665 Bytes
23e63de
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x794bb1106cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x794bb1106d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x794bb1106dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x794bb1106e60>", "_build": "<function ActorCriticPolicy._build at 0x794bb1106ef0>", "forward": "<function ActorCriticPolicy.forward at 0x794bb1106f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x794bb1107010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x794bb11070a0>", "_predict": "<function ActorCriticPolicy._predict at 0x794bb1107130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x794bb11071c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x794bb1107250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x794bb11072e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x794bb10a9f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694113278610983366, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACPil75p3BU/4PkevuHSyr6gqjm+ANG+PAAAAAAAAAAApoSXvWiEzz5zA5A9T9KkvjzhbrxTSvE8AAAAAAAAAACt1BG+IGIQP3eTLDzJJrC+CI9yveNm0zwAAAAAAAAAAIAgyT17qom6NqvGNg24xzGt2pO6MJzqtQAAAAAAAIA/wLBFvm+PGj+T6ki+YDIDv1j0Eb61teG8AAAAAAAAAABNmgk+e3S5uuoWLTiNOW6z8CQUu1VNRrcAAIA/AACAPwB5l70bmY89xuEKPoF8WL7GQEU7bDsqvQAAAAAAAAAADfIvPk5BpbwmYkK9wF8KOqtnqb0aD2K9AACAPwAAgD/6IXE+Or0bP6LSbT3hT/S+9L5FPnxzkrwAAAAAAAAAAOB8JL6DcTe8GVVKO0FQjzkV06g9J3WYugAAgD8AAIA/8/nDPWw8hbtKGr68Z1avPJgVuTwcx5S9AACAPwAAgD+Wz02+9OpQPniZ1j4zwmK+GSLVPOqLbD0AAAAAAAAAAEDe7j0KR3W5pqlKvXeYwbuLgxY8yjCqvAAAgD8AAIA/AB7xvEdnkz4Tu7k9YFuSvj6itjy2CsQ9AAAAAAAAAACGJGo+JiAAP58RMb4Ab+a+JeSEPaqGFr4AAAAAAAAAANN8Ir5hgYC8MgYGOgOEQTgU8ds987w2uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEJcHSnccmMAWyUS/qMAXSUR0CebGmfoRqXdX2UKGgGR0BuQlDYywfRaAdL2WgIR0CebI5vcafjdX2UKGgGR0BuBLjin5zpaAdL6WgIR0CebNLaEi+tdX2UKGgGR0Buki+cpb2UaAdL3WgIR0CebZCZF5OadX2UKGgGR0BwVDSDyvs7aAdNEAFoCEdAnm2x3JPqLXV9lChoBkdAbJUYqoZQ52gHS9loCEdAnm3j3dsSCnV9lChoBkdAYzM1x82Ji2gHTegDaAhHQJ5uU++ueSV1fZQoaAZHQG6ctqpLmIVoB0vWaAhHQJ5ugXHim2t1fZQoaAZHQG4Ru+qR2bJoB0vsaAhHQJ5u2IacZtN1fZQoaAZHQG+OXy7PIGRoB0vXaAhHQJ5vMGkep4t1fZQoaAZHQG/R1OKwY+BoB0vlaAhHQJ5veDOC5Et1fZQoaAZHQHFLPmgam41oB0vaaAhHQJ5vfFdcB2h1fZQoaAZHQHI2mEGqxTtoB0vJaAhHQJ5wmiJwbVB1fZQoaAZHQHFloHLRrrRoB0vnaAhHQJ5xnPiT+vR1fZQoaAZHQG58bJ4jbBZoB0vkaAhHQJ5x6q4pc5d1fZQoaAZHQHBHNhiLEUFoB0vTaAhHQJ5x+7L+xW11fZQoaAZHQHM4DnFHavloB00SAWgIR0Cec0lkH2RJdX2UKGgGR0BxqWkbgjyGaAdL22gIR0Cec1GyX2M9dX2UKGgGR0BwyotRNyo5aAdL02gIR0Cec5lqagEmdX2UKGgGR0BwmrdDYywfaAdL9WgIR0Cec9Fkxyn2dX2UKGgGR0BwdUCEHt4SaAdL3GgIR0CedAZ9/jKgdX2UKGgGR0BwFaLKmsNlaAdNNAFoCEdAnnRVWfbsW3V9lChoBkdAb987PppvgmgHTQ8BaAhHQJ50WxnnMdN1fZQoaAZHQG+fEAHVwxZoB0vnaAhHQJ50pvm5lOJ1fZQoaAZHQEEknGbTc7BoB0vdaAhHQJ50xSde6Zp1fZQoaAZHQHEDbDEWIoFoB0voaAhHQJ51TJ7sv7F1fZQoaAZHQHCJYbS7Xg9oB0vmaAhHQJ52aq94/u91fZQoaAZHQG6DS+pOvdNoB0vdaAhHQJ53Ig5imVJ1fZQoaAZHQHHh0knkT6BoB0vUaAhHQJ53MgX/HYJ1fZQoaAZHQHJgRKg7HQ1oB002AWgIR0Cedyo1k1/EdX2UKGgGR0Bw+cbVBlcyaAdL5GgIR0Ced6CtihFmdX2UKGgGR0BwJOqvNeMRaAdL2mgIR0CeeNgkTpPidX2UKGgGR0Bw9USL61staAdL02gIR0CeeXv/R3NcdX2UKGgGR0ByFKC+UQkHaAdL2mgIR0CeeaeMQ2/BdX2UKGgGR0BxuFXNke6qaAdNCAFoCEdAnnnbdWQwK3V9lChoBkdAbVf/XGwRoWgHS/5oCEdAnnoVLBbfQHV9lChoBkdAcEEC17Y022gHS9hoCEdAnnofa6BiC3V9lChoBkdAcbyMjNY8uGgHTRIBaAhHQJ56w2FWXC11fZQoaAZHQGKEnY6GQCFoB03oA2gIR0Cee1yIYWLxdX2UKGgGR0ByeH7Q9ic5aAdNCgFoCEdAnnvrl/6O53V9lChoBkdAbyOXBxgiNmgHS+NoCEdAnnwpZB9kSXV9lChoBkdAcOxUVBUrCmgHS+hoCEdAnn0C925hB3V9lChoBkdAcLYNBF/hEWgHTQ4BaAhHQJ5+JVcUuct1fZQoaAZHQG0/aDGtITZoB0vfaAhHQJ5+vHEMspZ1fZQoaAZHQHH/adUbT+hoB00mAWgIR0CeftJNj9XLdX2UKGgGR0BuC9noPkJbaAdL4WgIR0Cef5oDPnjidX2UKGgGR0BvpAE6kqMFaAdL6WgIR0Cef6eJHiFTdX2UKGgGR0Buiav1UVBVaAdL22gIR0Cef+B4Uvf1dX2UKGgGR0BvM5a1TisGaAdL8WgIR0CegISNwR5DdX2UKGgGR0ByKz/R3NcGaAdL/WgIR0CegJXbM5fddX2UKGgGR0ByXJKBd2PlaAdNXQFoCEdAnoDyhFmWdHV9lChoBkdAciUQWvbGm2gHTRUBaAhHQJ6CNR3u/lB1fZQoaAZHQG8OoVEd/8VoB0vwaAhHQJ6DpmpVCHB1fZQoaAZHQHKOzzd1uBNoB0vVaAhHQJ6EAD2alUJ1fZQoaAZHQG/GgDaGpMpoB0v0aAhHQJ6FlyvLX+V1fZQoaAZHQG7XM9B8hLZoB0vkaAhHQJ6F+qaPS2J1fZQoaAZHQG7UqxLTQVtoB0vIaAhHQJ6GgJBw++x1fZQoaAZHQHEiHXI2fkFoB00dAWgIR0Cehrg/keZHdX2UKGgGR0BxtOAYpDu0aAdL92gIR0CehsfGuLaVdX2UKGgGR0BwRG/xlQMyaAdL4mgIR0CehtmU4aP0dX2UKGgGR0BxVdstTUAlaAdL6GgIR0CehxEFnqVydX2UKGgGR0ByV54X40uUaAdNEQFoCEdAnoczqOcUd3V9lChoBkdAcUt6Mzdk8WgHS8hoCEdAnoe+Q2dd3XV9lChoBkdAcQEWzF+/g2gHS+toCEdAnooXJ5mh/XV9lChoBkdAcX3n/DLr5mgHS+doCEdAnopci4axYHV9lChoBkdAbTlCtzS1E2gHS/BoCEdAnow+Aqd6LXV9lChoBkdAcP79w3o9tGgHS9xoCEdAnoyRwMpgC3V9lChoBkdAcDKXVsk6cWgHS99oCEdAnoz1qzqrzXV9lChoBkdAcYP8vmHP/2gHTQIBaAhHQJ6NUJx//ed1fZQoaAZHQG/f/Ijnmq5oB0vraAhHQJ6NlYmsvIx1fZQoaAZHQHMJCc5Ke05oB0vyaAhHQJ6NstwrDqJ1fZQoaAZHQG61MFUyYXxoB0vsaAhHQJ6N8x8D0UZ1fZQoaAZHQGJH5B9kSVZoB03oA2gIR0Cejn2TxG2DdX2UKGgGR0Bt5hDb8FY/aAdNAAFoCEdAno+8Aq/dqXV9lChoBkdAYIUEIPbwjWgHTegDaAhHQJ6QdKQJXyR1fZQoaAZHQHJxlnRLK3doB0v2aAhHQJ6S2Ei+tbN1fZQoaAZHQHIMGsA/9pBoB00HAWgIR0Cek+t7rs0IdX2UKGgGR0BwiSBun/DMaAdL2GgIR0CelRxSYPXkdX2UKGgGR0BwMbSc9W6taAdL42gIR0CelqR4yGi6dX2UKGgGR0BuR0xGlQ/HaAdL2mgIR0CelqU/OdGzdX2UKGgGR0Btyfk1dgOSaAdL1WgIR0Cel12jfvWpdX2UKGgGR0Bxh7t7a7EpaAdNBQFoCEdAnpfWjsUqQXV9lChoBkdAcoKoePq9oWgHTSYBaAhHQJ6YRFOO8011fZQoaAZHQG6KXnp0OmRoB0v6aAhHQJ6YXhAGB4F1fZQoaAZHQHIDcasIVudoB0vSaAhHQJ6Yrjp9qlB1fZQoaAZHQHHFiVfNRm9oB00aAWgIR0CemUYgJTl1dX2UKGgGR0Byri6iCaqkaAdNBgFoCEdAnpuwnpjc23V9lChoBkdAcP+1w5vLo2gHS9RoCEdAnpwYh+vyLHV9lChoBkdAZTUs5GSZB2gHTegDaAhHQJ6cJStNi6R1fZQoaAZHQGLL2p6yB09oB03oA2gIR0CenRhS9/SZdX2UKGgGR0BiQriZOSGKaAdN6ANoCEdAnp10bcXWOXV9lChoBkdAcGntNBWxQmgHS+JoCEdAnp7DziCJ43V9lChoBkdAcJ/TKkl/pmgHS+loCEdAnqBklme18nV9lChoBkdAcVQ+GoJiRWgHS/FoCEdAnqHLonrpq3V9lChoBkdAc9CXrt3OfWgHS+VoCEdAnqIMmfGuLnV9lChoBkdAcXN0zTF2m2gHS+5oCEdAnqITsD4gzXV9lChoBkdAcDfcTJyQxWgHS/BoCEdAnqIOERJ2+3V9lChoBkdAcaqO09hZyWgHTVsBaAhHQJ6iZe8f3ex1fZQoaAZHQHEYwIMSbphoB0vraAhHQJ6imaoddVx1fZQoaAZHQHJu28yvcJtoB00gAWgIR0CeoskAxSHedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}