kamleshsolanki commited on
Commit
e8a3ee0
·
verified ·
1 Parent(s): db04a23

End of training

Browse files
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-sa-4.0
4
+ base_model: microsoft/layoutlmv3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: layoutlm-document-v2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-document-v2
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0036
20
+ - Ate de la facture: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
21
+ - Iret du fournisseur: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}
22
+ - Om du fournisseur: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
23
+ - Ontant tva: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
24
+ - Ontant total ht: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
25
+ - Ontant total ttc: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
26
+ - Umero de bc: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
27
+ - Overall Precision: 1.0
28
+ - Overall Recall: 1.0
29
+ - Overall F1: 1.0
30
+ - Overall Accuracy: 1.0
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 3e-05
50
+ - train_batch_size: 16
51
+ - eval_batch_size: 8
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 15
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Ate de la facture | Iret du fournisseur | Om du fournisseur | Ontant tva | Ontant total ht | Ontant total ttc | Umero de bc | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
61
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
62
+ | 1.6209 | 1.0 | 6 | 1.0535 | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.625, 'recall': 1.0, 'f1': 0.7692307692307693, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.7619047619047619, 'recall': 0.8421052631578947, 'f1': 0.8, 'number': 19} | {'precision': 1.0, 'recall': 0.2631578947368421, 'f1': 0.4166666666666667, 'number': 19} | {'precision': 0.4117647058823529, 'recall': 0.3333333333333333, 'f1': 0.36842105263157887, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | 0.7607 | 0.6794 | 0.7177 | 0.7863 |
63
+ | 0.8518 | 2.0 | 12 | 0.4979 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.7692307692307693, 'recall': 1.0, 'f1': 0.8695652173913044, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 0.8823529411764706, 'recall': 0.7894736842105263, 'f1': 0.8333333333333333, 'number': 19} | {'precision': 0.8333333333333334, 'recall': 0.7142857142857143, 'f1': 0.7692307692307692, 'number': 21} | {'precision': 1.0, 'recall': 0.4, 'f1': 0.5714285714285715, 'number': 10} | 0.9055 | 0.8779 | 0.8915 | 0.9084 |
64
+ | 0.4183 | 3.0 | 18 | 0.2090 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9047619047619048, 'recall': 1.0, 'f1': 0.9500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 0.9047619047619048, 'f1': 0.9500000000000001, 'number': 21} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | 0.9771 | 0.9771 | 0.9771 | 0.9771 |
65
+ | 0.2071 | 4.0 | 24 | 0.1112 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9047619047619048, 'recall': 1.0, 'f1': 0.9500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 0.9047619047619048, 'f1': 0.9500000000000001, 'number': 21} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | 0.9771 | 0.9771 | 0.9771 | 0.9771 |
66
+ | 0.084 | 5.0 | 30 | 0.0304 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
67
+ | 0.0429 | 6.0 | 36 | 0.0146 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
68
+ | 0.0183 | 7.0 | 42 | 0.0090 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
69
+ | 0.011 | 8.0 | 48 | 0.0045 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
70
+ | 0.0081 | 9.0 | 54 | 0.0041 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
71
+ | 0.0062 | 10.0 | 60 | 0.0124 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 0.9924 | 0.9924 | 0.9924 | 0.9924 |
72
+ | 0.005 | 11.0 | 66 | 0.0250 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 0.9924 | 0.9924 | 0.9924 | 0.9924 |
73
+ | 0.0047 | 12.0 | 72 | 0.0193 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 0.9924 | 0.9924 | 0.9924 | 0.9924 |
74
+ | 0.0073 | 13.0 | 78 | 0.0023 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
75
+ | 0.0041 | 14.0 | 84 | 0.0034 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
76
+ | 0.0044 | 15.0 | 90 | 0.0036 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | 1.0 | 1.0 | 1.0 | 1.0 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.44.2
82
+ - Pytorch 2.4.1+cu121
83
+ - Datasets 3.0.1
84
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1729276220.eaaed41b5f43.4291.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4aec2865ae0e8277b819002fdad7e04da9376eac930f2d2cb9fef04d20c9d8a4
3
- size 15492
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:296d3f45835f6770d9d8f550de5591d88bc8fa5814b7b73982a8ef60c1c7ed4b
3
+ size 16542
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2c81edaac3d44ed1cf2c6b3471528de32e0ccfe6ec92d928f682357f0013dd53
3
  size 501355532
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e586cb396896e5e5eccd0cbc6c62e76bc3932614ea0b754ef1c01659bb700b0
3
  size 501355532
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3ImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "apply_ocr": false,
46
+ "bos_token": "<s>",
47
+ "clean_up_tokenization_spaces": true,
48
+ "cls_token": "<s>",
49
+ "cls_token_box": [
50
+ 0,
51
+ 0,
52
+ 0,
53
+ 0
54
+ ],
55
+ "eos_token": "</s>",
56
+ "errors": "replace",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "<pad>",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv3Processor",
69
+ "sep_token": "</s>",
70
+ "sep_token_box": [
71
+ 0,
72
+ 0,
73
+ 0,
74
+ 0
75
+ ],
76
+ "tokenizer_class": "LayoutLMv3Tokenizer",
77
+ "trim_offsets": true,
78
+ "unk_token": "<unk>"
79
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff