File size: 3,816 Bytes
e1a5a68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import pandas as pd
import torch
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from transformers import DistilBertTokenizer, DistilBertModel
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"



MAX_LEN = 512
TRAIN_BATCH_SIZE = 16
VALID_BATCH_SIZE = 16
EPOCHS = 3
LEARNING_RATE = 1e-05
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'


tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)

class MultiLabelDataset(Dataset):

    def __init__(self, dataframe, tokenizer, max_len, new_data=False):
        self.tokenizer = tokenizer
        self.data = dataframe
        self.text = dataframe.comment_text
        self.new_data = new_data
        
        if not new_data:
            self.targets = self.data.labels
        self.max_len = max_len

    def __len__(self):
        return len(self.text)

    def __getitem__(self, index):
        text = str(self.text[index])
        text = " ".join(text.split())

        inputs = self.tokenizer.encode_plus(
            text,
            None,
            add_special_tokens=True,
            max_length=self.max_len,
            pad_to_max_length=True,
            return_token_type_ids=True
        )
        ids = inputs['input_ids']
        mask = inputs['attention_mask']
        token_type_ids = inputs["token_type_ids"]

        out = {
            'ids': torch.tensor(ids, dtype=torch.long),
            'mask': torch.tensor(mask, dtype=torch.long),
            'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
        }
        
        if not self.new_data:
            out['targets'] = torch.tensor(self.targets[index], dtype=torch.float)

        return out

class DistilBERTClass(torch.nn.Module):
    def __init__(self):
        super(DistilBERTClass, self).__init__()
        
        self.bert = DistilBertModel.from_pretrained("distilbert-base-uncased")
        self.classifier = torch.nn.Sequential(
            torch.nn.Linear(768, 768),
            torch.nn.ReLU(),
            torch.nn.Dropout(0.1),
            torch.nn.Linear(768, 6)
        )

    def forward(self, input_ids, attention_mask, token_type_ids):
        output_1 = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        hidden_state = output_1[0]
        out = hidden_state[:, 0]
        out = self.classifier(out)
        return out

model = DistilBERTClass()
model.to(DEVICE);

model_loaded = torch.load('model/inference_models_output_4fold_distilbert_fold_best_model.pth')

model.load_state_dict(model_loaded['model'])


val_params = {'batch_size': VALID_BATCH_SIZE,
               'shuffle': False,
    
                }
def give_toxic(text):
    # text = "You fucker "
    test_data = pd.DataFrame([text],columns=['comment_text'])
    test_set = MultiLabelDataset(test_data, tokenizer, MAX_LEN, new_data=True)
    test_loader = DataLoader(test_set, **val_params)

    all_test_pred = []

    def test(epoch):
        model.eval()

        with torch.inference_mode():

            for _, data in tqdm(enumerate(test_loader, 0)):


                ids = data['ids'].to(DEVICE, dtype=torch.long)
                mask = data['mask'].to(DEVICE, dtype=torch.long)
                token_type_ids = data['token_type_ids'].to(DEVICE, dtype=torch.long)
                outputs = model(ids, mask, token_type_ids)
                probas = torch.sigmoid(outputs)

                all_test_pred.append(probas)

    probas = test(model)

    all_test_pred = torch.cat(all_test_pred)

    label_columns = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]

    preds = all_test_pred.detach().cpu().numpy()[0]

    final_dict  = dict(zip(label_columns , preds))
    return final_dict

def device():
    return DEVICE

print(give_toxic("fuck"))