Text-to-Video
Diffusers
makovka2000 commited on
Commit
dc908b3
·
verified ·
1 Parent(s): 9d67672

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +732 -15
README.md CHANGED
@@ -8,7 +8,7 @@ library_name: diffusers
8
  <picture>
9
  <source media="(prefers-color-scheme: dark)" srcset="assets/KANDINSKY_LOGO_1_WHITE.png">
10
  <source media="(prefers-color-scheme: light)" srcset="assets/KANDINSKY_LOGO_1_BLACK.png">
11
- <img alt="Shows an illustrated sun in light mode and a moon with stars in dark mode." src="https://user-attachments.githubusercontent.com/25423296/163456779-a8556205-d0a5-45e2-ac17-42d089e3c3f8.png">
12
  </picture>
13
  </div>
14
 
@@ -16,26 +16,511 @@ library_name: diffusers
16
  <a href="https://habr.com/ru/companies/sberbank/articles/951800/">Habr</a> | <a href="https://kandinskylab.ai/">Project Page</a> | <a href="https://arxiv.org/abs/2511.14993">Technical Report</a> | 🤗 <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-video-lite> Video Lite </a> / <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-video-pro> Video Pro </a> / <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-image-lite> Image Lite </a> | <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/kandinsky5"> 🤗 Diffusers </a> | <a href="https://github.com/kandinskylab/kandinsky-5/blob/main/comfyui/README.md">ComfyUI</a>
17
  </div>
18
 
19
- # Kandinsky 5.0: A family of diffusion models for Video & Image generation
20
 
21
- This repository provides a family of state-of-the-art diffusion models for high-resolution image and 10-second video synthesis, presented in the paper "Kandinsky 5.0: A Family of Foundation Models for Image and Video Generation". The framework includes Kandinsky 5.0 Image Lite for image generation, and Kandinsky 5.0 Video Lite and Video Pro for fast and high-quality text-to-video and image-to-video generation.
22
 
23
- - **Paper**: [Kandinsky 5.0: A Family of Foundation Models for Image and Video Generation](https://huggingface.co/papers/2511.14993)
24
- - **Project Page**: https://kandinskylab.ai/
25
- - **Code**: https://github.com/kandinskylab/kandinsky-5
26
 
27
- ## Sample Usage
28
 
29
- You can use the `kandinsky` library, which integrates with `diffusers`, to perform text-to-video inference.
30
 
31
- First, clone the repository and install dependencies:
32
- ```bash
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  git clone https://github.com/kandinskylab/kandinsky-5.git
34
  cd kandinsky-5
 
 
 
 
35
  pip install -r requirements.txt
36
  ```
37
 
38
- Then, you can use the following Python snippet for text-to-video generation:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  ```python
41
  import torch
@@ -59,11 +544,216 @@ images = pipe(
59
  )
60
  ```
61
 
62
- ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
- If you find Kandinsky 5.0 useful in your research, please cite the following paper:
65
 
66
- ```bibtex
 
 
 
67
  @misc{arkhipkin2025kandinsky50familyfoundation,
68
  title={Kandinsky 5.0: A Family of Foundation Models for Image and Video Generation},
69
  author={Vladimir Arkhipkin and Vladimir Korviakov and Nikolai Gerasimenko and Denis Parkhomenko and Viacheslav Vasilev and Alexey Letunovskiy and Nikolai Vaulin and Maria Kovaleva and Ivan Kirillov and Lev Novitskiy and Denis Koposov and Nikita Kiselev and Alexander Varlamov and Dmitrii Mikhailov and Vladimir Polovnikov and Andrey Shutkin and Julia Agafonova and Ilya Vasiliev and Anastasiia Kargapoltseva and Anna Dmitrienko and Anastasia Maltseva and Anna Averchenkova and Olga Kim and Tatiana Nikulina and Denis Dimitrov},
@@ -73,4 +763,31 @@ If you find Kandinsky 5.0 useful in your research, please cite the following pap
73
  primaryClass={cs.CV},
74
  url={https://arxiv.org/abs/2511.14993},
75
  }
76
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  <picture>
9
  <source media="(prefers-color-scheme: dark)" srcset="assets/KANDINSKY_LOGO_1_WHITE.png">
10
  <source media="(prefers-color-scheme: light)" srcset="assets/KANDINSKY_LOGO_1_BLACK.png">
11
+ <img alt="Shows an illustrated sun in light mode and a moon with stars in dark mode." src="https://user-images.githubusercontent.com/25423296/163456779-a8556205-d0a5-45e2-ac17-42d089e3c3f8.png">
12
  </picture>
13
  </div>
14
 
 
16
  <a href="https://habr.com/ru/companies/sberbank/articles/951800/">Habr</a> | <a href="https://kandinskylab.ai/">Project Page</a> | <a href="https://arxiv.org/abs/2511.14993">Technical Report</a> | 🤗 <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-video-lite> Video Lite </a> / <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-video-pro> Video Pro </a> / <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-image-lite> Image Lite </a> | <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/kandinsky5"> 🤗 Diffusers </a> | <a href="https://github.com/kandinskylab/kandinsky-5/blob/main/comfyui/README.md">ComfyUI</a>
17
  </div>
18
 
19
+ <h1>Kandinsky 5.0: A family of diffusion models for Video & Image generation</h1>
20
 
21
+ In this repository, we provide a family of diffusion models to generate a video or an image given a textual prompt and/or image.
22
 
 
 
 
23
 
 
24
 
25
+ https://github.com/user-attachments/assets/b06f56de-1b05-4def-a611-1a3159ed71b0
26
 
27
+
28
+
29
+ ## Project Updates
30
+ - 🔥 ```2025/11/24```: LoRas for Camera control is open-sourced: [Lite LoRAs](https://huggingface.co/collections/kandinskylab/kandinsky-50-video-lite-loras) and [Pro LoRAs](https://huggingface.co/collections/kandinskylab/kandinsky-50-video-pro-loras). Inference code is avaibale in `examples/inference_examples_i2v_lora.ipynb` and `examples/inference_examples_t2v_lora.ipynb`
31
+ - 🔥 ```2025/11/20```: `Kandinsky 5.0 Video Pro` is open-sourced. T2V & I2V models are available.
32
+ - 🔥 ```2025/11/15```: `Kandinsky 5.0 Lite I2V` & `Kandinsky 5.0 Lite T2I` models are open-sourced.
33
+ - 🔥 ```2025/10/19```: Further VAE tiling optimization. NF4 version of Qwen2.5-VL from Bitsandbytes is supported. Flash Attention 2, Flash Attention 2, Sage Attention or SDPA can be selected for 5-seconds generation using option --attention_engine. Now generation should work on the GPUS with 12 GB of memory. Kandinsky 5 Video Lite is [accepted to diffusers](https://github.com/huggingface/diffusers/pull/12478).
34
+ - 🔥 ```2025/10/7```: The ComfyUI README file has been updated. SDPA support has been added, allowing you to run our code without Flash attention. Magcache support for nocfg checkpoints has been added, allowing Magcache support for sft and nocfg checkpoints. Memory consumption in the VAE has been reduced, with the entire pipeline now running at 24 GB with offloading.
35
+ - 🔥 ```2025/09/29```: We have open-sourced `Kandinsky 5.0 T2V Lite` a lite (2B parameters) version of `Kandinsky 5.0 Video` text-to-video generation model. Released checkpoints: `kandinsky5lite_t2v_pretrain_5s`, `kandinsky5lite_t2v_pretrain_10s`, `kandinsky5lite_t2v_sft_5s`, `kandinsky5lite_t2v_sft_10s`, `kandinsky5lite_t2v_nocfg_5s`, `kandinsky5lite_t2v_nocfg_10s`, `kandinsky5lite_t2v_distilled16steps_5s`, `kandinsky5lite_t2v_distilled16steps_10s` contains weight from pretrain, supervised finetuning, cfg distillation and diffusion distillation into 16 steps. 5s checkpoints are capable of generating videos up to 5 seconds long. 10s checkpoints is faster models checkpoints trained with [NABLA](https://huggingface.co/ai-forever/Wan2.1-T2V-14B-NABLA-0.7) algorithm and capable to generate videos up to 10 seconds long.
36
+
37
+
38
+ ## Table of Contents
39
+ 1. [Kandinsky 5.0 Video Pro](#kandinsky-50-video-pro)
40
+ 2. [Kandinsky 5.0 Video Lite](#kandinsky-50-video-lite)
41
+ 3. [Kandinsky 5.0 Image Lite](#kandinsky-50-image-lite)
42
+ 4. [Kandinsky 5.0 Image Editing](#kandinsky-50-image-editing)
43
+ 5. [Quickstart & Run examples](#quickstart)
44
+
45
+
46
+ ## Kandinsky 5.0 Video Pro
47
+
48
+ Kandinsky 5.0 Video Pro is a line-up of 19B models that generates high-quality HD videos from English and Russian prompts with controllable camera motion.
49
+
50
+ We provide several Text-to-Video model variants, each optimized for different use cases:
51
+
52
+ * SFT model — delivers the highest generation quality;
53
+
54
+ * Pretrain model — designed for fine-tuning by researchers and enthusiasts.
55
+
56
+ All models are available in two versions: for generating 5-second and 10-second videos.
57
+
58
+ Additionally, we provide Image-to-Video model capable to generate video given input image and text prompt.
59
+
60
+ ### Pipeline
61
+
62
+ **Latent diffusion pipeline** with **Flow Matching**.
63
+
64
+ **Diffusion Transformer (DiT)** as the main generative backbone with **cross-attention to text embeddings**.
65
+
66
+ - **Qwen2.5-VL** and **CLIP** provides text embeddings.
67
+
68
+ - **HunyuanVideo 3D VAE** encodes/decodes video into a latent space.
69
+
70
+ - **DiT** is the main generative module using cross-attention to condition on text.
71
+
72
+ <img width="1600" height="477" alt="Picture1" src="https://github.com/user-attachments/assets/17fc2eb5-05e3-4591-9ec6-0f6e1ca397b3" />
73
+
74
+ <img width="800" height="406" alt="Picture2" src="https://github.com/user-attachments/assets/f3006742-e261-4c39-b7dc-e39330be9a09" />
75
+
76
+ ### Model Zoo
77
+
78
+ | Model | config | video duration | NFE | Checkpoint | Latency* |
79
+ |-------------------------------------|--------|----------------|-----|------------|----------------|
80
+ | Kandinsky 5.0 T2V Pro SFT 5s HD | configs/k5_pro_t2v_5s_sft_hd.yaml | 5s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s) | 1241 |
81
+ | Kandinsky 5.0 T2V Pro SFT 10s HD |configs/k5_pro_t2v_10s_sft_hd.yaml| 10s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-sft-10s) | - |
82
+ | Kandinsky 5.0 T2V Pro SFT 5s SD | configs/k5_pro_t2v_5s_sft_sd.yaml | 5s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s) | 560 |
83
+ | Kandinsky 5.0 T2V Pro SFT 10s SD |configs/k5_pro_t2v_10s_sft_sd.yaml| 10s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-sft-10s) | 1158 |
84
+ | Kandinsky 5.0 T2V Pro pretrain 5s HD |-| 5s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-pretrain-5s) | 1241 |
85
+ | Kandinsky 5.0 T2V Pro pretrain 10s HD |-| 10s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-pretrain-10s) | - |
86
+ | Kandinsky 5.0 T2V Pro pretrain 5s SD |-| 5s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-pretrain-5s) | 560 |
87
+ | Kandinsky 5.0 T2V Pro pretrain 10s SD |-| 10s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-pretrain-10s) | 1158 |
88
+ | Kandinsky 5.0 I2V Pro HD 5s | configs/k5_pro_i2v_5s_sft_hd.yaml | 5s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2V-Pro-sft-5s) | - |
89
+ | Kandinsky 5.0 I2V Pro SD 5s | configs/k5_pro_i2v_5s_sft_sd.yaml | 5s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2V-Pro-sft-5s) | - |
90
+
91
+ *Latency was measured after the second inference run. The first run of the model can be slower due to the compilation process. Inference was measured on an NVIDIA H100 GPU with 80 GB of memory, using CUDA 12.8.1 and PyTorch 2.8. For 5-second models Flash Attention 3 was used.
92
+
93
+ ### Examples:
94
+
95
+ <table border="0" style="width: 100; text-align: left; margin-top: 20px;">
96
+ <tr>
97
+ <td>
98
+ <video src="https://github.com/user-attachments/assets/918cd953-7777-4f6f-bc98-e3f42f045cb1" width=100 controls autoplay loop></video>
99
+ </td>
100
+ <td>
101
+ <video src="https://github.com/user-attachments/assets/5ed4eed7-5f4c-4b05-8886-a62131efea75" width=100 controls autoplay loop></video>
102
+ </td>
103
+ <td>
104
+ <video src="https://github.com/user-attachments/assets/299f810b-d9b9-4bf9-8ec5-af30762879a4" width=100 controls autoplay loop></video>
105
+ </td>
106
+
107
+ </tr>
108
+ <tr>
109
+ <td>
110
+ <video src="https://github.com/user-attachments/assets/6946e0e8-3088-4584-a4df-162bb24c4548" width=100 controls autoplay loop></video>
111
+ </td>
112
+ <td>
113
+ <video src="https://github.com/user-attachments/assets/5aab3a8d-6447-43b5-b78b-862b1f0ce6f7" width=100 controls autoplay loop></video>
114
+ </td>
115
+ <td>
116
+ <video src="https://github.com/user-attachments/assets/118eeeb8-c33c-4799-bc89-a5430417c771" width=100 controls autoplay loop></video>
117
+ </td>
118
+ </tr>
119
+ <tr>
120
+ <td>
121
+ <video src="https://github.com/user-attachments/assets/fbfeeab1-2d79-468d-9fbd-4a944b1d541e" width=100 controls autoplay loop></video>
122
+ </td>
123
+ <td>
124
+ <video src="https://github.com/user-attachments/assets/9fb24941-ff42-467b-b4e0-601c6833acaa" width=100 controls autoplay loop></video>
125
+ </td>
126
+ <td>
127
+ <video src="https://github.com/user-attachments/assets/540dafda-cb0b-4b17-ac00-3c3b4ae0794c" width=100 controls autoplay loop></video>
128
+ </td>
129
+ </tr>
130
+
131
+ </table>
132
+
133
+ ### Results:
134
+
135
+ #### Side-by-Side evaluation
136
+
137
+ <table border="0" style="width: 200; text-align: left; margin-top: 20px;">
138
+ <tr>
139
+ <td>
140
+ <img width="200" alt="image" src="https://github.com/user-attachments/assets/73e5ff00-2735-40fd-8f01-767de9181918" /></img>
141
+ </td>
142
+ <td>
143
+ <img width="200" alt="image" src="https://github.com/user-attachments/assets/f449a9e7-74b7-481d-82da-02723e396acd" /></img>
144
+ </td>
145
+
146
+ <tr>
147
+ <td>
148
+ Comparison with Veo 3
149
+ </td>
150
+ <td>
151
+ Comparison with Veo 3 fast
152
+ </td>
153
+ <tr>
154
+ <td>
155
+ <img width="200" alt="image" src="https://github.com/user-attachments/assets/a6902fb6-b5e8-4093-adad-aa4caab79c6d" /></img>
156
+ </td>
157
+ <td>
158
+ <img width="200" alt="image" src="https://github.com/user-attachments/assets/09986015-3d07-4de8-b942-c145039b9b2d" /></img>
159
+ </td>
160
+ <tr>
161
+ <td>
162
+ Comparison with Wan 2.2 A14B Text-to-Video mode
163
+ </td>
164
+ <td>
165
+ Comparison with Wan 2.2 A14B Image-to-Video mode
166
+ </td>
167
+
168
+ </table>
169
+
170
+ ## Kandinsky 5.0 Video Lite
171
+
172
+ Kandinsky 5.0 T2V Lite is a lightweight video generation model (2B parameters) that ranks #1 among open-source models in its class. It outperforms larger Wan models (5B and 14B) and offers the best understanding of Russian concepts in the open-source ecosystem.
173
+
174
+ We provide 8 model variants, each optimized for different use cases:
175
+
176
+ * SFT model — delivers the highest generation quality;
177
+
178
+ * CFG-distilled — runs 2× faster;
179
+
180
+ * Diffusion-distilled — enables low-latency generation with minimal quality loss (6× faster);
181
+
182
+ * Pretrain model — designed for fine-tuning by researchers and enthusiasts.
183
+
184
+ All models are available in two versions: for generating 5-second and 10-second videos.
185
+
186
+ Additionally, we provide Image-to-Video model capable to generate video given input image and text prompt.
187
+
188
+
189
+ ### Model Zoo
190
+
191
+ | Model | config | video duration | NFE | Checkpoint | Latency* |
192
+ |-------------------------------------|--------|----------------|-----|------------|----------------|
193
+ | Kandinsky 5.0 T2V Lite SFT 5s |configs/k5_lite_t2v_5s_sft_sd.yaml | 5s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s) | 139 s |
194
+ | Kandinsky 5.0 T2V Lite SFT 10s |configs/k5_lite_t2v_10s_sft_sd.yaml| 10s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Lite-sft-10s) | 224 s |
195
+ | Kandinsky 5.0 T2V Lite pretrain 5s |configs/k5_lite_t2v_5s_pretrain_sd.yaml | 5s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Lite-pretrain-5s) | 139 s |
196
+ | Kandinsky 5.0 T2V Lite pretrain 10s |configs/k5_lite_t2v_10s_pretrain_sd.yaml | 10s | 100 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Lite-pretrain-10s) | 224 s |
197
+ | Kandinsky 5.0 T2V Lite no-CFG 5s |configs/k5_lite_t2v_5s_nocfg_sd.yaml| 5s | 50 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Lite-nocfg-5s) | 77 s |
198
+ | Kandinsky 5.0 T2V Lite no-CFG 10s |configs/k5_lite_t2v_10s_nocfg_sd.yaml| 10s | 50 |🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Lite-nocfg-10s) | 124 s |
199
+ | Kandinsky 5.0 T2V Lite distill 5s |configs/k5_lite_t2v_5s_distil_sd.yaml| 5s | 16 | 🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Lite-distilled16steps-5s)| 35 s |
200
+ | Kandinsky 5.0 T2V Lite distill 10s |configs/k5_lite_t2v_10s_distil_sd.yaml| 10s | 16 | 🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Lite-distilled16steps-10s)| 61 s |
201
+ | Kandinsky 5.0 I2V Lite 5s |configs/k5_lite_i2v_5s_sft_sd.yaml| 5s | 100 | 🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2V-Lite-5s)| 139 s |
202
+
203
+ *Latency was measured after the second inference run. The first run of the model can be slower due to the compilation process. Inference was measured on an NVIDIA H100 GPU with 80 GB of memory, using CUDA 12.8.1 and PyTorch 2.8. For 5-second models Flash Attention 3 was used.
204
+
205
+ ### Examples:
206
+
207
+ #### Kandinsky 5.0 T2V Lite SFT
208
+
209
+ <table border="0" style="width: 100; text-align: left; margin-top: 20px;">
210
+ <tr>
211
+ <td>
212
+ <video src="https://github.com/user-attachments/assets/bc38821b-f9f1-46db-885f-1f70464669eb" width=100 controls autoplay loop></video>
213
+ </td>
214
+ <td>
215
+ <video src="https://github.com/user-attachments/assets/9f64c940-4df8-4c51-bd81-a05de8e70fc3" width=100 controls autoplay loop></video>
216
+ </td>
217
+ <td>
218
+ <video src="https://github.com/user-attachments/assets/77dd417f-e0bf-42bd-8d80-daffcd054add" width=100 controls autoplay loop></video>
219
+ </td>
220
+ <tr>
221
+ <td>
222
+ <video src="https://github.com/user-attachments/assets/385a0076-f01c-4663-aa46-6ce50352b9ed" width=100 controls autoplay loop></video>
223
+ </td>
224
+ <td>
225
+ <video src="https://github.com/user-attachments/assets/7c1bcb31-cc7d-4385-9a33-2b0cc28393dd" width=100 controls autoplay loop></video>
226
+ </td>
227
+ <td>
228
+ <video src="https://github.com/user-attachments/assets/990a8a0b-2df1-4bbc-b2e3-2859b6f1eea6" width=100 controls autoplay loop></video>
229
+ </td>
230
+ </tr>
231
+
232
+ </table>
233
+
234
+
235
+ #### Kandinsky 5.0 T2V Lite Distill
236
+
237
+ <table border="0" style="width: 100; text-align: left; margin-top: 20px;">
238
+ <tr>
239
+ <td>
240
+ <video src="https://github.com/user-attachments/assets/861342f9-f576-4083-8a3b-94570a970d58" width=100 controls autoplay loop></video>
241
+ </td>
242
+ <td>
243
+ <video src="https://github.com/user-attachments/assets/302e4e7d-781d-4a58-9b10-8c473d469c4b" width=100 controls autoplay loop></video>
244
+ </td>
245
+ <td>
246
+ <video src="https://github.com/user-attachments/assets/3e70175c-40e5-4aec-b506-38006fe91a76" width=100 controls autoplay loop></video>
247
+ </td>
248
+ <td>
249
+ <video src="https://github.com/user-attachments/assets/b7da85f7-8b62-4d46-9460-7f0e505de810" width=100 controls autoplay loop></video>
250
+ </td>
251
+
252
+ </table>
253
+
254
+
255
+ ### Results:
256
+
257
+ #### Side-by-Side evaluation
258
+
259
+ The evaluation is based on the expanded prompts from the [Movie Gen benchmark](https://github.com/facebookresearch/MovieGenBench), which are available in the expanded_prompt column of the benchmark/moviegen_bench.csv file.
260
+
261
+ <table border="0" style="width: 400; text-align: left; margin-top: 20px;">
262
+ <tr>
263
+ <td>
264
+ <img src="assets/sbs/kandinsky_5_video_lite_vs_sora.jpg" width=400 ></img>
265
+ </td>
266
+ <td>
267
+ <img src="assets/sbs/kandinsky_5_video_lite_vs_wan_2.1_14B.jpg" width=400 ></img>
268
+ </td>
269
+ <tr>
270
+ <td>
271
+ <img src="assets/sbs/kandinsky_5_video_lite_vs_wan_2.2_5B.jpg" width=400 ></img>
272
+ </td>
273
+ <td>
274
+ <img src="assets/sbs/kandinsky_5_video_lite_vs_wan_2.2_A14B.jpg" width=400 ></img>
275
+ </td>
276
+ <tr>
277
+ <td>
278
+ <img src="assets/sbs/kandinsky_5_video_lite_vs_wan_2.1_1.3B.jpg" width=400 ></img>
279
+ </td>
280
+
281
+ </table>
282
+
283
+ #### Distill Side-by-Side evaluation
284
+
285
+ <table border="0" style="width: 400; text-align: left; margin-top: 20px;">
286
+ <tr>
287
+ <td>
288
+ <img src="assets/sbs/kandinsky_5_video_lite_5s_vs_kandinsky_5_video_lite_distill_5s.jpg" width=400 ></img>
289
+ </td>
290
+ <td>
291
+ <img src="assets/sbs/kandinsky_5_video_lite_10s_vs_kandinsky_5_video_lite_distill_10s.jpg" width=400 ></img>
292
+ </td>
293
+
294
+ </table>
295
+
296
+
297
+ ## Kandinsky 5.0 Image Lite
298
+
299
+ Kandinsky 5.0 Image Lite is a line-up of 6B image generation models with the following capabilities:
300
+
301
+ * 1K resulution (1280x768, 1024x1024 and others).
302
+
303
+ * High visual quality
304
+
305
+ * Strong text-writing
306
+
307
+ * Russian concepts understanding
308
+
309
+
310
+ ### Model Zoo
311
+
312
+ | Model | config | NFE | Checkpoint | Latency* |
313
+ |-------------------------------------|--------|-----|------------|----------------|
314
+ | Kandinsky 5.0 T2I Lite |configs/k5_lite_t2i_sft_hd.yaml| 100 | 🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2I-Lite)| 13 s |
315
+ | Kandinsky 5.0 T2I Lite pretrain |-| 100 | 🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2I-Lite-pretrain)| 13 s |
316
+
317
+ *Latency was measured after the second inference run. The first run of the model can be slower due to the compilation process. Inference was measured on an NVIDIA H100 GPU with 80 GB of memory, using CUDA 12.8.1 and PyTorch 2.8. For 5-second models Flash Attention 3 was used.
318
+
319
+ ### Examples:
320
+
321
+ <table border="0" style="width: 200; text-align: left; margin-top: 20px;">
322
+ <tr>
323
+ <td>
324
+ <image src="https://github.com/user-attachments/assets/f46e6866-15ce-445d-bb81-9843a341e2a9" width=200 ></image>
325
+ </td>
326
+ <td>
327
+ <image src="https://github.com/user-attachments/assets/74f3af1f-b11e-4174-9f36-e956b871a6e6" width=200 ></image>
328
+ </td>
329
+ <td>
330
+ <image src="https://github.com/user-attachments/assets/7e469d09-8b96-4691-b929-dd809827adf9" width=200 ></image>
331
+ </td>
332
+ <tr>
333
+ </table>
334
+ <table border="0" style="width: 200; text-align: left; margin-top: 10px;">
335
+ <td>
336
+ <image src="https://github.com/user-attachments/assets/8054b25b-5d71-4547-8822-b07d71d137f4" width=200 ></image>
337
+ </td>
338
+ <td>
339
+ <image src="https://github.com/user-attachments/assets/f4825237-640b-4b2d-86e6-fd08fe95039f" width=200 ></image>
340
+ </td>
341
+ <td>
342
+ <image src="https://github.com/user-attachments/assets/73fbbc2a-3249-4b70-8931-2893ab0107a5" width=200 ></image>
343
+ </td>
344
+
345
+ </table>
346
+ <table border="0" style="width: 200; text-align: left; margin-top: 10px;">
347
+ <td>
348
+ <image src="https://github.com/user-attachments/assets/c309650b-8d8b-4e44-bb63-48287e22ff44" width=200 ></image>
349
+ </td>
350
+ <td>
351
+ <image src="https://github.com/user-attachments/assets/d5c0fcca-69b7-4d77-9c36-cd2fb87f2615" width=200 ></image>
352
+ </td>
353
+ <td>
354
+ <image src="https://github.com/user-attachments/assets/7895c3e8-2e72-40b8-8bf7-dcac859a6b29" width=200 ></image>
355
+ </td>
356
+
357
+ </table>
358
+
359
+ ### Results
360
+
361
+
362
+ ### Results:
363
+
364
+ #### Side-by-Side evaluation
365
+
366
+ <table border="0" style="width: 200; text-align: left; margin-top: 20px;">
367
+ <tr>
368
+ <td>
369
+ <img width="200" src="https://github.com/user-attachments/assets/d5f984e6-f847-49bd-b961-b3f27c141c56" /></img>
370
+ </td>
371
+ <td>
372
+ <img width="200" src="https://github.com/user-attachments/assets/c34dbf24-6a14-4b0f-9b59-c6300dc21c7c" /></img>
373
+ </td>
374
+ <tr>
375
+ <td>
376
+ Comparison with FLUX.1 dev
377
+ </td>
378
+ <td>
379
+ Comparison with Qwen-Image
380
+ </td>
381
+
382
+ </table>
383
+
384
+
385
+
386
+ ## Kandinsky 5.0 Image Editing
387
+
388
+ Kandinsky 5.0 Image Editing is a line-up of 6B image editing models with the following capabilities:
389
+
390
+ - 1K resulution (1280x768, 1024x1024 and others).
391
+
392
+ - High visual quality
393
+
394
+ - Strong text-writing
395
+
396
+ - Russian concepts understanding
397
+
398
+ ### Model Zoo
399
+
400
+ | Model | config | NFE | Checkpoint | Latency* |
401
+ |-------------------------------------|--------|-----|------------|----------------|
402
+ | Kandinsky 5.0 T2I Editing |configs/k5_lite_i2i_sft_hd.yaml| 100 | 🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2I-Lite) | - |
403
+ | Kandinsky 5.0 T2I Editing pretrain |-| 100 | 🤗 [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2I-Lite-pretrain) | - |
404
+
405
+ *Latency was measured after the second inference run. The first run of the model can be slower due to the compilation process. Inference was measured on an NVIDIA H100 GPU with 80 GB of memory, using CUDA 12.8.1 and PyTorch 2.8. For 5-second models Flash Attention 3 was used.
406
+
407
+ ### Examples:
408
+
409
+ <table border="0" style="width: 400; text-align: left; margin-top: 20px;">
410
+ <tr>
411
+ <td>
412
+ <img width="400" alt="image" src="https://github.com/user-attachments/assets/027bdeaf-2bed-4a00-9d6a-77a706100ed8" /></image>
413
+ </td>
414
+ <td>
415
+ <img width="400" alt="image" src="https://github.com/user-attachments/assets/6b8c059c-e65d-4560-88e7-4543c56d7a3f" /></image>
416
+ </td>
417
+
418
+ <tr>
419
+ <td>
420
+ Change this to a cowboy hat.
421
+ </td>
422
+ <td>
423
+ Turn this into a neon sign hanging
424
+ on a brick wall in a cool modern office.
425
+ </td>
426
+ </tr>
427
+ <tr>
428
+ <td>
429
+ <img width="400" alt="image" src="https://github.com/user-attachments/assets/b579d635-1710-453e-954c-12f76748dafc" /></image>
430
+ </td>
431
+ <td>
432
+ <img width="400" alt="image" src="https://github.com/user-attachments/assets/9074e1c7-28aa-405d-9eca-38dfa6f7e6c9" /></image>
433
+ </td>
434
+ <tr>
435
+ <td>
436
+ Swap your sweatshirt for a se-
437
+ quined evening dress, add some bright jewelry,
438
+ and brighten your lips and eyes. Keep the angle.
439
+ </td>
440
+ <td>
441
+ Turn this into a real photograph of
442
+ the same dog.
443
+ </td>
444
+ </tr>
445
+ </table>
446
+
447
+
448
+
449
+ ### Results:
450
+
451
+ #### Side-by-Side evaluation
452
+
453
+ <table border="0" style="width: 200; text-align: left; margin-top: 20px;">
454
+ <tr>
455
+ <td>
456
+ <img width="200" alt="image" src="https://github.com/user-attachments/assets/a8f30810-00c2-4dbf-97ae-3135ca81f961" /></img>
457
+ </td>
458
+ <td>
459
+ <img width="200" alt="image" src="https://github.com/user-attachments/assets/21534266-4511-40e2-a306-e30c12bbf26c" /></img>
460
+ </td>
461
+ <tr>
462
+ <td>
463
+ Comparison with FLUX.1 Kontext [dev]
464
+ </td>
465
+ <td>
466
+ Comparison with Qwen-Image-Edit-2509
467
+ </td>
468
+ </table>
469
+
470
+
471
+ ## Quickstart
472
+
473
+ #### Installation
474
+ Clone the repo:
475
+ ```sh
476
  git clone https://github.com/kandinskylab/kandinsky-5.git
477
  cd kandinsky-5
478
+ ```
479
+
480
+ Install dependencies:
481
+ ```sh
482
  pip install -r requirements.txt
483
  ```
484
 
485
+ To improve inference performance on NVidia Hopper GPUs, we recommend installing [Flash Attention 3](https://github.com/Dao-AILab/flash-attention/?tab=readme-ov-file#flashattention-3-beta-release).
486
+
487
+ #### Model Download
488
+ ```sh
489
+ python download_models.py
490
+ ```
491
+ use `models` argument to download some specific models, otherwise all models will be downloaded
492
+
493
+ example to download only `kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s` and `kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s`:
494
+ ```sh
495
+ python download_models.py --models kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s,kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s
496
+ ```
497
+
498
+ #### Run Kandinsky 5.0 T2V Lite SFT 5s
499
+
500
+ ```sh
501
+ python test.py --prompt "A dog in red hat"
502
+ ```
503
+
504
+ #### Run Kandinsky 5.0 T2V Lite SFT 10s
505
+
506
+ ```sh
507
+ python test.py --config ./configs/k5_lite_t2v_10s_sft_sd.yaml --prompt "A dog in red hat" --video_duration 10
508
+ ```
509
+
510
+
511
+ #### Run Kandinsky 5.0 I2V Lite 5s
512
+
513
+ ```sh
514
+ python test.py --config ./configs/k5_lite_i2v_5s_sft_sd.yaml --prompt "The bear plays balalaika." --image "./assets/test_image.jpg" --video_duration 5
515
+ ```
516
+
517
+ #### Run Kandinsky 5.0 T2I Lite
518
+
519
+ ```sh
520
+ python test.py --config ./configs/k5_lite_t2i_sft_hd.yaml --prompt "A dog in a red hat" --width=1280 --height=768
521
+ ```
522
+
523
+ ### T2V Inference
524
 
525
  ```python
526
  import torch
 
544
  )
545
  ```
546
 
547
+ ### I2V Inference
548
+
549
+ ```python
550
+ import torch
551
+ from kandinsky import get_I2V_pipeline
552
+
553
+ device_map = {
554
+ "dit": torch.device('cuda:0'),
555
+ "vae": torch.device('cuda:0'),
556
+ "text_embedder": torch.device('cuda:0')
557
+ }
558
+
559
+ pipe = get_I2V_pipeline(device_map, conf_path="configs/k5_lite_i2v_5s_sft_sd.yaml")
560
+
561
+ images = pipe(
562
+ seed=42,
563
+ time_length=5,
564
+ save_path='./test.mp4',
565
+ text="The bear plays balalaika.",
566
+ image = "assets/test_image.jpg",
567
+ )
568
+ ```
569
+
570
+ ### T2I Inference
571
+
572
+ ```python
573
+ import torch
574
+ from kandinsky import get_T2I_pipeline
575
+
576
+ device_map = {
577
+ "dit": torch.device('cuda:0'),
578
+ "vae": torch.device('cuda:0'),
579
+ "text_embedder": torch.device('cuda:0')
580
+ }
581
+
582
+ pipe = get_T2I_pipeline(device_map, conf_path="configs/k5_lite_t2i_sft_hd.yaml")
583
+
584
+ images = pipe(
585
+ seed=42,
586
+ save_path='./test.png',
587
+ text="A cat in a red hat with a label 'HELLO'"
588
+ )
589
+ ```
590
+
591
+
592
+ ### I2I Inference
593
+
594
+
595
+ ```python
596
+ import torch
597
+ from kandinsky import get_I2I_pipeline
598
+
599
+ device_map = {
600
+ "dit": torch.device('cuda:0'),
601
+ "vae": torch.device('cuda:0'),
602
+ "text_embedder": torch.device('cuda:0')
603
+ }
604
+
605
+ pipe = get_I2I_pipeline(
606
+ resolution=1024, offload=True,
607
+ device_map=device_map,
608
+ )
609
+ out = pipe(
610
+ "Replace the cat with a husky, leave the rest unchanged",
611
+ image='./assets/cat_in_hat.png'
612
+ )
613
+
614
+ ```
615
+
616
+
617
+ Please, refer to [examples](examples) folder for more examples in various notebooks.
618
+
619
+ ### Distributed Inference
620
+
621
+ For a faster inference, we also provide the capability to perform inference in a distributed way:
622
+ ```
623
+ NUMBER_OF_NODES=1
624
+ NUMBER_OF_DEVICES_PER_NODE=1 / 2 / 4
625
+ python -m torch.distributed.launch --nnodes $NUMBER_OF_NODES --nproc-per-node $NUMBER_OF_DEVICES_PER_NODE test.py
626
+ ```
627
+
628
+ ### Optimized Inference
629
+
630
+ #### Offloading
631
+ For less memory consumption you can use **offloading** of the models.
632
+ ```sh
633
+ python test.py --prompt "A dog in red hat" --offload
634
+ ```
635
+
636
+ #### Magcache
637
+ Also we provide [Magcache](https://github.com/Zehong-Ma/MagCache) inference for faster generations (now available for sft 5s and sft 10s checkpoints).
638
+
639
+ ```sh
640
+ python test.py --prompt "A dog in red hat" --magcache
641
+ ```
642
+
643
+ #### Qwen encoder quantization
644
+ To reduce GPU memory needed for Qwen encoder we provide option to use NF4-quantized version from [bitsandbytes](https://github.com/bitsandbytes-foundation/bitsandbytes).
645
+
646
+ ```sh
647
+ python test.py --prompt "A dog in red hat" --qwen_quantization
648
+ ```
649
+
650
+ #### Attention engine selection
651
+ Depending on your hardware you can use the follwing full attention algorithm implementation:
652
+ * PyTorch [SDPA](https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
653
+ * [Flash Attention 2](https://github.com/Dao-AILab/flash-attention)
654
+ * [Flash Attention 3](https://github.com/Dao-AILab/flash-attention/tree/main/hopper)
655
+ * [Sage Attention](https://github.com/thu-ml/SageAttention)
656
+
657
+ The attention algorithm can be selected using an option "--attention_engine" of test.py script for 5 second (and less) video generation. For 10-second generation we use sparse attention algorithm [NABLA](https://arxiv.org/abs/2507.13546).
658
+
659
+ Note that currently (19 Oct. 2025) version build from source contains a bug and produces noisy output. A temporary workaround to fix it is decribed [here](https://github.com/thu-ml/SageAttention/issues/277).
660
+
661
+ ```sh
662
+ python test.py --prompt "A dog in red hat" --attention_engine=flash_attention_3
663
+ ```
664
+
665
+ ```sh
666
+ python test.py --prompt "A dog in red hat" --attention_engine=flash_attention_2
667
+ ```
668
+
669
+ ```sh
670
+ python test.py --prompt "A dog in red hat" --attention_engine=sdpa
671
+ ```
672
+
673
+ ```sh
674
+ python test.py --prompt "A dog in red hat" --attention_engine=sage
675
+ ```
676
+
677
+ By default we use option --attention_engine=auto which enables automatic selection of the most optimal algorithm installed in your system.
678
+
679
+ ### ComfyUI
680
+
681
+ See the instruction [here](comfyui)
682
+
683
+ ### CacheDiT
684
+
685
+ cache-dit offers Fully Cache Acceleration support for Kandinsky-5 with DBCache, TaylorSeer and Cache CFG. Visit their [example](https://github.com/vipshop/cache-dit/blob/main/examples/pipeline/run_kandinsky5_t2v.py) for more details.
686
+
687
+ ### Beta testing
688
+ You can apply to participate in the beta testing of the Kandinsky Video Lite via the [telegram bot](https://t.me/kandinsky_access_bot).
689
+
690
+ ## 📑 Todo List
691
+
692
+ - [ ] Kandinsky 5.0 Video Pro
693
+ - [ ] Checkpoints
694
+ - [x] sft
695
+ - [x] pretrain
696
+ - [ ] rl
697
+ - [ ] distil 16 steps
698
+ - [x] I2V
699
+ - [ ] ComfyUI integration
700
+ - [ ] Diffusers integration
701
+ - [x] Caching acceleration support
702
+ - [x] Multi-GPU Inference code of the models
703
+ - [ ] Kandinsky 5.0 Video Lite
704
+ - [ ] Checkpoints
705
+ - [x] sft
706
+ - [x] pretrain
707
+ - [ ] rl
708
+ - [x] cfg distil
709
+ - [x] distil 16 steps
710
+ - [ ] autoregressive generation
711
+ - [x] I2V
712
+ - [x] ComfyUI integration
713
+ - [x] Diffusers integration
714
+ - [x] Caching acceleration support
715
+ - [x] Multi-GPU Inference code of the models
716
+ - [ ] Kandinsky 5.0 Image Lite
717
+ - [x] Checkpoints
718
+ - [x] rl
719
+ - [x] pretrain
720
+ - [ ] ComfyUI integration
721
+ - [ ] Diffusers integration
722
+ - [x] Caching acceleration support
723
+ - [x] Multi-GPU Inference code of the models
724
+ - [ ] Kandinsky 5.0 Image Editing
725
+ - [x] Checkpoints
726
+ - [x] sft
727
+ - [x] pretrain
728
+ - [ ] ComfyUI integration
729
+ - [ ] Diffusers integration
730
+ - [x] Multi-GPU Inference code of the models
731
+ - [ ] Technical report
732
+
733
+
734
+ # Authors
735
+
736
+
737
+ <B>Core Contributors</B>:
738
+ - <B>Video</B>: Alexey Letunovskiy, Maria Kovaleva, Lev Novitskiy, Denis Koposov, Dmitrii
739
+ Mikhailov, Anastasiia Kargapoltseva, Anna Dmitrienko, Anastasia Maltseva
740
+ - <B>Image & Editing</B>: Nikolai Vaulin, Nikita Kiselev, Alexander Varlamov
741
+ - <B>Pre-training Data</B>: Ivan Kirillov, Andrey Shutkin, Nikolai Vaulin, Ilya Vasiliev
742
+ - <B>Post-training Data</B>: Julia Agafonova, Anna Averchenkova, Olga Kim
743
+ - <B>Research Consolidation & Paper</B>: Viacheslav Vasilev, Vladimir Polovnikov
744
+
745
+ <B>Contributors</B>: Yury Kolabushin, Kirill Chernyshev, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, Kormilitsyn Semen, Tatiana Nikulina, Olga Vdovchenko, Polina Mikhailova, Polina
746
+ Gavrilova, Nikita Osterov, Bulat Akhmatov
747
+
748
+ <B>Track Leaders</B>: Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis
749
+ Parkhomenko
750
 
751
+ <B>Project Supervisor</B>: Denis Dimitrov
752
 
753
+
754
+ # Citation
755
+
756
+ ```
757
  @misc{arkhipkin2025kandinsky50familyfoundation,
758
  title={Kandinsky 5.0: A Family of Foundation Models for Image and Video Generation},
759
  author={Vladimir Arkhipkin and Vladimir Korviakov and Nikolai Gerasimenko and Denis Parkhomenko and Viacheslav Vasilev and Alexey Letunovskiy and Nikolai Vaulin and Maria Kovaleva and Ivan Kirillov and Lev Novitskiy and Denis Koposov and Nikita Kiselev and Alexander Varlamov and Dmitrii Mikhailov and Vladimir Polovnikov and Andrey Shutkin and Julia Agafonova and Ilya Vasiliev and Anastasiia Kargapoltseva and Anna Dmitrienko and Anastasia Maltseva and Anna Averchenkova and Olga Kim and Tatiana Nikulina and Denis Dimitrov},
 
763
  primaryClass={cs.CV},
764
  url={https://arxiv.org/abs/2511.14993},
765
  }
766
+
767
+ @misc{mikhailov2025nablanablaneighborhoodadaptiveblocklevel,
768
+ title={$\nabla$NABLA: Neighborhood Adaptive Block-Level Attention},
769
+ author={Dmitrii Mikhailov and Aleksey Letunovskiy and Maria Kovaleva and Vladimir Arkhipkin
770
+ and Vladimir Korviakov and Vladimir Polovnikov and Viacheslav Vasilev
771
+ and Evelina Sidorova and Denis Dimitrov},
772
+ year={2025},
773
+ eprint={2507.13546},
774
+ archivePrefix={arXiv},
775
+ primaryClass={cs.CV},
776
+ url={https://arxiv.org/abs/2507.13546},
777
+ }
778
+ ```
779
+
780
+ # Acknowledgements
781
+
782
+ We gratefully acknowledge the open-source projects and research that made Kandinsky 5.0 possible:
783
+
784
+ - [PyTorch](https://pytorch.org/) — for model training and inference.
785
+ - [FlashAttention 3](https://github.com/Dao-AILab/flash-attention) — for efficient attention and faster inference.
786
+ - [Qwen2.5-VL](https://github.com/QwenLM/Qwen3-VL) — for providing high-quality text embeddings.
787
+ - [CLIP](https://github.com/openai/CLIP) — for robust text–image alignment.
788
+ - [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo) — for video latent encoding and decoding.
789
+ - [MagCache](https://github.com/Zehong-Ma/MagCache) — for accelerated inference.
790
+ - [ComfyUI](https://github.com/comfyanonymous/ComfyUI) — for integration into node-based workflows.
791
+
792
+ We deeply appreciate the contributions of these communities and researchers to the open-source ecosystem.
793
+