ynakashima commited on
Commit
b1835fc
1 Parent(s): 8ed9f00

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +168 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ datasets:
4
+ - OpenAssistant/oasst2
5
+ - nvidia/HelpSteer
6
+ language:
7
+ - ja
8
+ - en
9
+ library_name: transformers
10
+ base_model: karakuri-ai/karakuri-lm-70b-v0.1
11
+ pipeline_tag: conversational
12
+ tags:
13
+ - llama
14
+ - llama-2
15
+ - steerlm
16
+ model-index:
17
+ - name: karakuri-ai/karakuri-lm-70b-chat-v0.1
18
+ results:
19
+ - task:
20
+ type: text-generation
21
+ name: Text Generation
22
+ dataset:
23
+ name: MT-Bench
24
+ type: unknown
25
+ metrics:
26
+ - type: unknown
27
+ name: score
28
+ value: 6.609375
29
+ source:
30
+ url: https://huggingface.co/spaces/lmsys/mt-bench
31
+ - task:
32
+ type: text-generation
33
+ name: Text Generation
34
+ dataset:
35
+ name: MT-Bench-jp
36
+ type: unknown
37
+ metrics:
38
+ - type: unknown
39
+ name: score
40
+ value: 6.43125
41
+ source:
42
+ url: https://api.wandb.ai/links/wandb-japan/6ff86bp3
43
+ ---
44
+
45
+ # KARAKURI LM
46
+
47
+ KARAKURI LM is a pretrained language model that builds upon Llama 2.
48
+ Our model enhances Llama 2's capabilities by incorporating additional Japanese vocabulary and further pretraining on a mixture of Japanese and multilingual corpora.
49
+
50
+ KARAKURI LM Chat is a fine-tuned version of KARAKURI LM, which was trained on a mixture of publicly available and closed datasets using the [SteerLM](https://aclanthology.org/2023.findings-emnlp.754/) technique.
51
+ During fine-tuning, our model employed a continual learning approach.
52
+ Unlike the common practice of relying solely on structured conversational datasets, we also incorporated unstructured corpora, similar to what was used during its pretraining phase.
53
+
54
+ Despite the conversational datasets containing only 2.5% Japanese tokens, our model has shown remarkable performance.
55
+ It achieves the highest performance among Japanese open models on the [MT-Bench-jp](https://api.wandb.ai/links/wandb-japan/6ff86bp3) at the time of release.
56
+ Furthermore, it achieves performance comparable to Llama 2 70B Chat on the original English [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench).
57
+
58
+ You can find more details in our blog post (coming soon).
59
+ If you are curious about our model, give our [demo](https://lm.karakuri.cc/) a try.
60
+
61
+ ## Model Details
62
+
63
+ - **Developed by**: [KARAKURI Inc.](https://about.karakuri.ai/)
64
+ - **Model type**: Causal decoder-only transformer language model
65
+ - **Languages**: English and Japanese
66
+ - **Finetuned from**: [karakuri-ai/karakuri-lm-70b-v0.1](https://huggingface.co/karakuri-ai/karakuri-lm-70b-v0.1)
67
+ - **Contact**: For questions and comments about the model, please email `karakuri-rd@karakuri.ai`
68
+
69
+ ## Performance
70
+
71
+ At the time of release, KARAKURI LM 70B Chat v0.1 achieves the highest performance among Japanese open models on the [MT-Bench-jp](https://api.wandb.ai/links/wandb-japan/6ff86bp3):
72
+
73
+ | Model | Size | Alignment | MT-Bench-jp |
74
+ | :---------------------------------- | :-----: | :---------: | ----------: |
75
+ | GPT-4 | - | RLHF | 8.78 |
76
+ | GPT-3.5-Turbo | - | RLHF | 8.24 |
77
+ | Claude 2.1 | - | RLHF | 8.18 |
78
+ | Gemini Pro | - | RLHF | 7.17 |
79
+ | **KARAKURI LM 70B Chat v0.1** | **70B** | **SteerLM** | **6.43** |
80
+ | Qarasu-14B-Chat-Plus-Unleashed | 14B | SFT | 6.26 |
81
+ | Llama 2 70B Chat | 70B | RLHF | 5.23 |
82
+ | ELYZA-Japanese-Llama-2-13B | 13B | SFT | 5.05 |
83
+ | Japanese-StableLM-Instruct-Beta-70B | 70B | SFT | 5.03 |
84
+ | Swallow-70B-Instruct | 70B | SFT | 4.39 |
85
+
86
+ It also achieves performance comparable to Llama 2 70B Chat on the original English [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench):
87
+
88
+ | Model | Average | MT-Bench | MT-Bench-jp |
89
+ | :---------------------------- | -------: | -------: | ----------: |
90
+ | **KARAKURI LM 70B Chat v0.1** | **6.52** | **6.61** | **6.43** |
91
+ | Llama 2 70B Chat | 6.04 | 6.86 | 5.23 |
92
+
93
+ ## Use in 🤗 Transformers
94
+
95
+ You can run the model using the `pipeline()` function from 🤗 Transformers:
96
+
97
+ ```python
98
+ from transformers import pipeline, Conversation
99
+
100
+ chatbot = pipeline("conversational", model="karakuri-ai/karakuri-lm-70b-chat-v0.1", device_map="auto", torch_dtype="auto")
101
+
102
+ conversation = Conversation("週末に日帰りで東京に遊びに行こうと思っています。日帰りなので、短時間で回れるおすすめの観光プランを教えてください。")
103
+ conversation = chatbot(conversation, max_new_tokens=512)
104
+ conversation.messages[-1]["content"]
105
+ ```
106
+
107
+ We use the following prompt template of multi-turn conversation in the Llama format, which includes an encoded string of multiple attribute values.
108
+
109
+ ```python
110
+ messages = [
111
+ {"role": "system", "content": "System prompt"},
112
+ {"role": "user", "content": "User prompt"},
113
+ {"role": "assistant", "content": "Model response"},
114
+ {"role": "user", "content": "User prompt"},
115
+ ]
116
+ chatbot.tokenizer.apply_chat_template(messages, tokenize=False)
117
+ # <s>[INST] <<SYS>>
118
+ # System prompt
119
+ # <</SYS>>
120
+ #
121
+ # User prompt [ATTR] helpfulness: 4 correctness: 4 coherence: 4 complexity: 4 verbosity: 4 quality: 4 toxicity: 0 humor: 0 creativity: 0 [/ATTR] [/INST] Model response </s><s>[INST] User prompt [ATTR] helpfulness: 4 correctness: 4 coherence: 4 complexity: 4 verbosity: 4 quality: 4 toxicity: 0 humor: 0 creativity: 0 [/ATTR] [/INST]
122
+ ```
123
+
124
+ The prompt template contains nine attributes.
125
+ The first five are derived from HelpSteer, while the remaining four are derived from OASST2.
126
+ The values are represented by integers ranging from 0 to 4, with 0 being the lowest and 4 being the highest.
127
+
128
+ - helpfulness (default: 4)
129
+ - correctness (default: 4)
130
+ - coherence (default: 4)
131
+ - complexity (default: 4)
132
+ - verbosity (default: 4)
133
+ - quality (default: 4)
134
+ - toxicity (default: 0)
135
+ - humor (default: 0)
136
+ - creativity (default: 0)
137
+
138
+ You can change the attribute values by replacing the default values specified in the chat template:
139
+
140
+ ```python
141
+ chatbot.tokenizer.chat_template = chatbot.tokenizer.chat_template.replace("complexity: 4", "complexity: 0")
142
+ ```
143
+
144
+ ## Training
145
+
146
+ ### Training Datasets
147
+
148
+ - [OASST2](https://huggingface.co/datasets/OpenAssistant/oasst2)
149
+ - Our internal conversational datasets
150
+
151
+ ### Training Infrastructure
152
+
153
+ - **Hardware**: KARAKURI LM 70B was trained on 32 nodes of an Amazon EC2 trn1.32xlarge instance.
154
+ - **Software**: We use code based on [neuronx-nemo-megatron](https://github.com/aws-neuron/neuronx-nemo-megatron).
155
+
156
+ ## Acknowledgements
157
+
158
+ We gratefully acknowledge the support from AWS Japan through the [AWS LLM Development Support Program](https://aws.amazon.com/jp/local/llm-development-support-program/).
159
+
160
+ ## License
161
+
162
+ Llama 2 is licensed under the [LLAMA 2 Community License](https://ai.meta.com/llama/license/), Copyright © Meta Platforms, Inc. All Rights Reserved.
163
+
164
+ KARAKURI LM is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License ([CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)).
165
+ Under this license, you are free to share and adapt this model, even for commercial purposes, as long as you provide appropriate credit and distribute your contributions under the same license.
166
+
167
+ However, if you wish to use KARAKURI LM for commercial purposes, we require that you contact us directly, regardless of the terms of the CC BY-SA 4.0 license.
168
+ If you have any questions regarding the interpretation of its terms, please also feel free to contact us.