karmall0xc's picture
ppo model initial version
9532503
raw
history blame
14.9 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0531baa60>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe0531baaf0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0531bab80>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe0531bac10>",
"_build": "<function ActorCriticPolicy._build at 0x7fe0531baca0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fe0531bad30>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe0531badc0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe0531bae50>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fe0531baee0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe0531baf70>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0531c3040>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe0531c30d0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fe0531bfc80>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float32",
"_shape": [
24
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"_shape": [
4
],
"low": "[-1. -1. -1. -1.]",
"high": "[1. 1. 1. 1.]",
"bounded_below": "[ True True True True]",
"bounded_above": "[ True True True True]",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 507904,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1677409837183350018,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIb/PGSWGeH8CUhpRSlIwBbJRNQAaMAXSUR0B6vnq3VkMDdX2UKGgGaAloD0MIT3gJTn1YM0CUhpRSlGgVTUAGaBZHQHrDHhKlHjJ1fZQoaAZoCWgPQwhgIXNlUG0ZQJSGlFKUaBVNQAZoFkdAesPkWRA8jnV9lChoBmgJaA9DCGgj100pLwxAlIaUUpRoFU1ABmgWR0B6xKbe/Ho6dX2UKGgGaAloD0MI6PhoccbYMECUhpRSlGgVTUAGaBZHQHrHo+wC8vp1fZQoaAZoCWgPQwgNNQpJZrEywJSGlFKUaBVNQAZoFkdAesgPYFqzq3V9lChoBmgJaA9DCD2ARX79qChAlIaUUpRoFU1ABmgWR0B617FZPl+3dX2UKGgGaAloD0MIwtzu5T6hM8CUhpRSlGgVTUAGaBZHQHrY73TNMXd1fZQoaAZoCWgPQwgZqmIq/eQSQJSGlFKUaBVNQAZoFkdAet2wSrYGuHV9lChoBmgJaA9DCAR0X85s9zNAlIaUUpRoFU1ABmgWR0B7TIchkiD/dX2UKGgGaAloD0MIUFJgAUw5JkCUhpRSlGgVTUAGaBZHQHtXEug6EJ11fZQoaAZoCWgPQwhftTLhl1oEwJSGlFKUaBVNQAZoFkdAe1tf29L6DXV9lChoBmgJaA9DCNnRONTvoh9AlIaUUpRoFU1ABmgWR0B7W2+i8FpxdX2UKGgGaAloD0MIWOatug7lF8CUhpRSlGgVTUAGaBZHQHtbfexfOUt1fZQoaAZoCWgPQwh4YWu28g4wQJSGlFKUaBVNQAZoFkdAe1uOxB3RonV9lChoBmgJaA9DCCF4fHvXoChAlIaUUpRoFU1ABmgWR0B7W54bCJoCdX2UKGgGaAloD0MIiq2gaYmtPUCUhpRSlGgVTUAGaBZHQHtbrGNrCWN1fZQoaAZoCWgPQwgaNPRPcPtAQJSGlFKUaBVNQAZoFkdAe2EN21UlzHV9lChoBmgJaA9DCNdppKXyAkRAlIaUUpRoFU1ABmgWR0B7YgTufEn9dX2UKGgGaAloD0MIDcaIRKELSUCUhpRSlGgVTUAGaBZHQHti0yckMTh1fZQoaAZoCWgPQwij5xa6EsU/QJSGlFKUaBVNQAZoFkdAe2Y3xnWat3V9lChoBmgJaA9DCFuzlZf8zypAlIaUUpRoFU1ABmgWR0B7ZqH31zySdX2UKGgGaAloD0MIXb9gN2yjK0CUhpRSlGgVTUAGaBZHQHtndUOuq3p1fZQoaAZoCWgPQwhCQpQvaHkpQJSGlFKUaBVNQAZoFkdAe2jCN0eU6nV9lChoBmgJaA9DCDRJLCl3czZAlIaUUpRoFU1ABmgWR0B7baOT7l7udX2UKGgGaAloD0MIs1w2OudTV8CUhpRSlGgVTRACaBZHQHuHFie/Yap1fZQoaAZoCWgPQwi22ViJeQVWwJSGlFKUaBVNhAJoFkdAe569qUNayXV9lChoBmgJaA9DCLfUQV4PVE/AlIaUUpRoFU29BWgWR0B72T5RCQcQdX2UKGgGaAloD0MIbJOKxto/OECUhpRSlGgVTUAGaBZHQHvZ+EZiuuB1fZQoaAZoCWgPQwiEEmba/pVVwJSGlFKUaBVNvAVoFkdAe9yq0tyxRnV9lChoBmgJaA9DCO+s3Xah+UJAlIaUUpRoFU1ABmgWR0B75qoo/iYLdX2UKGgGaAloD0MI0A64rpg9RECUhpRSlGgVTUAGaBZHQHvmuTNdJJ51fZQoaAZoCWgPQwgT7wBPWggiQJSGlFKUaBVNQAZoFkdAe+bIkJKJ23V9lChoBmgJaA9DCKpgVFInNEpAlIaUUpRoFU1ABmgWR0B7/GHKwIMSdX2UKGgGaAloD0MI5+RFJuChRkCUhpRSlGgVTUAGaBZHQHv9LKeTV2B1fZQoaAZoCWgPQwgzxLEubn8zQJSGlFKUaBVNQAZoFkdAe/3p5/smfHV9lChoBmgJaA9DCE4lA0AVOztAlIaUUpRoFU1ABmgWR0B8AOXyAhB7dX2UKGgGaAloD0MIBkg0gSKKNECUhpRSlGgVTUAGaBZHQHwBUSM98qp1fZQoaAZoCWgPQwhAbOnRVFM2QJSGlFKUaBVNQAZoFkdAfAIW1twaSHV9lChoBmgJaA9DCE7RkVz+TzRAlIaUUpRoFU1ABmgWR0B8A1+d9UjtdX2UKGgGaAloD0MIZtmTwOYeQ0CUhpRSlGgVTUAGaBZHQHwILzTWoWJ1fZQoaAZoCWgPQwiUiVsFMSZCQJSGlFKUaBVNQAZoFkdAfB9phF3IMnV9lChoBmgJaA9DCJHVrZ6T5EZAlIaUUpRoFU1ABmgWR0B8KB7SiM5wdX2UKGgGaAloD0MI5e5zfLRfVsCUhpRSlGgVTaACaBZHQHw6DaPCEYh1fZQoaAZoCWgPQwi71t6nqnBWwJSGlFKUaBVNMwRoFkdAfFxLaEi+tnV9lChoBmgJaA9DCO6wicxcK1DAlIaUUpRoFU1WBGgWR0B8XjPWxyGSdX2UKGgGaAloD0MIrmcIxyzPP0CUhpRSlGgVTUAGaBZHQHxxSMtK7I11fZQoaAZoCWgPQwhpxqLp7A5JQJSGlFKUaBVNQAZoFkdAfHIYXwb2lHV9lChoBmgJaA9DCDf+RGXD8j1AlIaUUpRoFU1ABmgWR0B8dLEYO2AodX2UKGgGaAloD0MI6iCvB5POSECUhpRSlGgVTUAGaBZHQHx+XVoYekp1fZQoaAZoCWgPQwjOOA1Rhe8+QJSGlFKUaBVNQAZoFkdAfH5oMKCxvHV9lChoBmgJaA9DCK4rZoS3pUVAlIaUUpRoFU1ABmgWR0B8fnTCtRvWdX2UKGgGaAloD0MIT+rL0k77QkCUhpRSlGgVTUAGaBZHQHyEgUHpr1x1fZQoaAZoCWgPQwhHjQkxl5T6P5SGlFKUaBVNQAZoFkdAfIdhRIjGDXV9lChoBmgJaA9DCGVTrvAuO0NAlIaUUpRoFU1ABmgWR0B8h90nw5NodX2UKGgGaAloD0MIaqD5nLt7RECUhpRSlGgVTUAGaBZHQHyInWBjFyd1fZQoaAZoCWgPQwh90LNZ9VNQQJSGlFKUaBVNQAZoFkdAfInY4hllLHV9lChoBmgJaA9DCFkXt9EArVvAlIaUUpRoFUtIaBZHQHyNRP420iR1fZQoaAZoCWgPQwjiOzHrxYxKQJSGlFKUaBVNQAZoFkdAfLSZnL7oCHV9lChoBmgJaA9DCKERbFz/qVDAlIaUUpRoFU0HBGgWR0B8uiisXBP9dX2UKGgGaAloD0MINxjqsMKdRUCUhpRSlGgVTUAGaBZHQHy9aCUX5311fZQoaAZoCWgPQwhQNuUK7w1UwJSGlFKUaBVNzQRoFkdAfMbC66J66nV9lChoBmgJaA9DCIJYNnNIe1BAlIaUUpRoFU1ABmgWR0B8zsHMUypJdX2UKGgGaAloD0MIz57L1CS5W8CUhpRSlGgVS09oFkdAfNUtGd7OV3V9lChoBmgJaA9DCAQb17/rNz1AlIaUUpRoFU1ABmgWR0B890ikfs/qdX2UKGgGaAloD0MIngq45/nPO0CUhpRSlGgVTUAGaBZHQHz4AS39aU11fZQoaAZoCWgPQwjuCKcFL9RMQJSGlFKUaBVNQAZoFkdAfPp4iX6ZY3V9lChoBmgJaA9DCCZvgJnvw1vAlIaUUpRoFUtfaBZHQH0QPGQ0XP91fZQoaAZoCWgPQwgkQ46tZ6Q8QJSGlFKUaBVNQAZoFkdAfRLqVyFPBXV9lChoBmgJaA9DCJTeN772sDNAlIaUUpRoFU1ABmgWR0B9EvS8an76dX2UKGgGaAloD0MILGaEtwefRUCUhpRSlGgVTUAGaBZHQH0TAMYuTRp1fZQoaAZoCWgPQwiGcMyyJ1FbwJSGlFKUaBVLUGgWR0B9FkI9kjHGdX2UKGgGaAloD0MIA5Xx7zN0TkCUhpRSlGgVTUAGaBZHQH0ZJ9ZzPrx1fZQoaAZoCWgPQwgROX09X19EQJSGlFKUaBVNQAZoFkdAfRwiz9jwx3V9lChoBmgJaA9DCA9h/DTuL0NAlIaUUpRoFU1ABmgWR0B9HUKNQ0oCdX2UKGgGaAloD0MI11BqL6JBQ0CUhpRSlGgVTUAGaBZHQH0edNvfj0d1fZQoaAZoCWgPQwhLdJZZhLY0QJSGlFKUaBVNQAZoFkdAfSHAjps41nV9lChoBmgJaA9DCMsw7gbRAj5AlIaUUpRoFU1ABmgWR0B9OlItlI3BdX2UKGgGaAloD0MIRx/zAYHAS0CUhpRSlGgVTUAGaBZHQH0/1hb4agp1fZQoaAZoCWgPQwiAt0CC4t1IQJSGlFKUaBVNQAZoFkdAfUMZiNKh+XV9lChoBmgJaA9DCJaYZyWtIERAlIaUUpRoFU1ABmgWR0B9TRrsSkCWdX2UKGgGaAloD0MI/BpJgnCQVcCUhpRSlGgVTc8FaBZHQH1S5IYm9g51fZQoaAZoCWgPQwg8SiU8oYFDQJSGlFKUaBVNQAZoFkdAfY0j8UEgXHV9lChoBmgJaA9DCDz03a0seU1AlIaUUpRoFU1ABmgWR0B9jeTTvy9VdX2UKGgGaAloD0MIk3Ahj+CCQ0CUhpRSlGgVTUAGaBZHQH2amJemelN1fZQoaAZoCWgPQwhKtU/HY0pDQJSGlFKUaBVNQAZoFkdAfZqjghr303V9lChoBmgJaA9DCLt/LESH7kxAlIaUUpRoFU1ABmgWR0B9mq+evpyIdX2UKGgGaAloD0MIWn7gKk8USECUhpRSlGgVTUAGaBZHQH2d8uzyBkJ1fZQoaAZoCWgPQwivzjEge3tbwJSGlFKUaBVLT2gWR0B9oKeoUBXCdX2UKGgGaAloD0MIH9eGinEqOkCUhpRSlGgVTUAGaBZHQH2gyzTnaFp1fZQoaAZoCWgPQwi0AkNWt343QJSGlFKUaBVNQAZoFkdAfaOwIdELIHV9lChoBmgJaA9DCALVP4hkQktAlIaUUpRoFU1ABmgWR0B9pM+1SflIdX2UKGgGaAloD0MIe6NWmL51SECUhpRSlGgVTUAGaBZHQH2mA9q1w5x1fZQoaAZoCWgPQwhqozodyD5JQJSGlFKUaBVNQAZoFkdAfamzAN5MUXV9lChoBmgJaA9DCBIykGeXcFvAlIaUUpRoFUsyaBZHQH2qHXyy2QZ1fZQoaAZoCWgPQwieP21Up3lDQJSGlFKUaBVNQAZoFkdAfdJHrhR64XV9lChoBmgJaA9DCDcbKzHPMEhAlIaUUpRoFU1ABmgWR0B917bM5fdAdX2UKGgGaAloD0MIBB4YQPhiTUCUhpRSlGgVTUAGaBZHQH3a7g88s+V1fZQoaAZoCWgPQwhOuFfmrTpFQJSGlFKUaBVNQAZoFkdAfeSoo/iYLXV9lChoBmgJaA9DCAWKWMSwAUhAlIaUUpRoFU1ABmgWR0B96j30wrUcdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 212,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 256,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}