kartiksrma's picture
Update README.md
5c993e6 verified
metadata
library_name: transformers
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: roberta-issue-classifier
    results: []
datasets:
  - JyotiNayak/political_ideologies
language:
  - en

roberta-issue-classifier

This model is a fine-tuned version of roberta-base on this dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0945
  • Accuracy: 0.9844
  • F1: 0.9844

Model description

Issue Type Mapping: {'economic': 0, 'environmental': 1, 'family/gender': 2, 'geo-political and foreign policy': 3, 'political': 4, 'racial justice and immigration': 5, 'religious': 6, 'social, health and education': 7}

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5661 0.625 100 0.4350 0.9437 0.9436
0.112 1.25 200 0.1488 0.975 0.9750
0.0335 1.875 300 0.1262 0.9781 0.9781
0.1009 2.5 400 0.1328 0.9781 0.9781
0.032 3.125 500 0.0945 0.9844 0.9844
0.0074 3.75 600 0.0944 0.9781 0.9781

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0