--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta-issue-classifier results: [] datasets: - JyotiNayak/political_ideologies language: - en --- # roberta-issue-classifier This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on [this](https://huggingface.co/datasets/JyotiNayak/political_ideologies) dataset. It achieves the following results on the evaluation set: - Loss: 0.0945 - Accuracy: 0.9844 - F1: 0.9844 ## Model description Issue Type Mapping: {'economic': 0, 'environmental': 1, 'family/gender': 2, 'geo-political and foreign policy': 3, 'political': 4, 'racial justice and immigration': 5, 'religious': 6, 'social, health and education': 7} ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5661 | 0.625 | 100 | 0.4350 | 0.9437 | 0.9436 | | 0.112 | 1.25 | 200 | 0.1488 | 0.975 | 0.9750 | | 0.0335 | 1.875 | 300 | 0.1262 | 0.9781 | 0.9781 | | 0.1009 | 2.5 | 400 | 0.1328 | 0.9781 | 0.9781 | | 0.032 | 3.125 | 500 | 0.0945 | 0.9844 | 0.9844 | | 0.0074 | 3.75 | 600 | 0.0944 | 0.9781 | 0.9781 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0