cotran2 commited on
Commit
46d21a2
1 Parent(s): 33c86bc

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/deberta-v3-base
3
+ datasets:
4
+ - nyu-mll/glue
5
+ - aps/super_glue
6
+ - facebook/anli
7
+ - tasksource/babi_nli
8
+ - sick
9
+ - snli
10
+ - scitail
11
+ - hans
12
+ - alisawuffles/WANLI
13
+ - tasksource/recast
14
+ - sileod/probability_words_nli
15
+ - joey234/nan-nli
16
+ - pietrolesci/nli_fever
17
+ - pietrolesci/breaking_nli
18
+ - pietrolesci/conj_nli
19
+ - pietrolesci/fracas
20
+ - pietrolesci/dialogue_nli
21
+ - pietrolesci/mpe
22
+ - pietrolesci/dnc
23
+ - pietrolesci/recast_white
24
+ - pietrolesci/joci
25
+ - pietrolesci/robust_nli
26
+ - pietrolesci/robust_nli_is_sd
27
+ - pietrolesci/robust_nli_li_ts
28
+ - pietrolesci/gen_debiased_nli
29
+ - pietrolesci/add_one_rte
30
+ - tasksource/imppres
31
+ - hlgd
32
+ - paws
33
+ - medical_questions_pairs
34
+ - Anthropic/model-written-evals
35
+ - truthful_qa
36
+ - nightingal3/fig-qa
37
+ - tasksource/bigbench
38
+ - blimp
39
+ - cos_e
40
+ - cosmos_qa
41
+ - dream
42
+ - openbookqa
43
+ - qasc
44
+ - quartz
45
+ - quail
46
+ - head_qa
47
+ - sciq
48
+ - social_i_qa
49
+ - wiki_hop
50
+ - wiqa
51
+ - piqa
52
+ - hellaswag
53
+ - pkavumba/balanced-copa
54
+ - 12ml/e-CARE
55
+ - art
56
+ - winogrande
57
+ - codah
58
+ - ai2_arc
59
+ - definite_pronoun_resolution
60
+ - swag
61
+ - math_qa
62
+ - metaeval/utilitarianism
63
+ - mteb/amazon_counterfactual
64
+ - SetFit/insincere-questions
65
+ - SetFit/toxic_conversations
66
+ - turingbench/TuringBench
67
+ - trec
68
+ - tals/vitaminc
69
+ - hope_edi
70
+ - strombergnlp/rumoureval_2019
71
+ - ethos
72
+ - tweet_eval
73
+ - discovery
74
+ - pragmeval
75
+ - silicone
76
+ - lex_glue
77
+ - papluca/language-identification
78
+ - imdb
79
+ - rotten_tomatoes
80
+ - ag_news
81
+ - yelp_review_full
82
+ - financial_phrasebank
83
+ - poem_sentiment
84
+ - dbpedia_14
85
+ - amazon_polarity
86
+ - app_reviews
87
+ - hate_speech18
88
+ - sms_spam
89
+ - humicroedit
90
+ - snips_built_in_intents
91
+ - hate_speech_offensive
92
+ - yahoo_answers_topics
93
+ - pacovaldez/stackoverflow-questions
94
+ - zapsdcn/hyperpartisan_news
95
+ - zapsdcn/sciie
96
+ - zapsdcn/citation_intent
97
+ - go_emotions
98
+ - allenai/scicite
99
+ - liar
100
+ - relbert/lexical_relation_classification
101
+ - tasksource/linguisticprobing
102
+ - tasksource/crowdflower
103
+ - metaeval/ethics
104
+ - emo
105
+ - google_wellformed_query
106
+ - tweets_hate_speech_detection
107
+ - has_part
108
+ - blog_authorship_corpus
109
+ - launch/open_question_type
110
+ - health_fact
111
+ - commonsense_qa
112
+ - mc_taco
113
+ - ade_corpus_v2
114
+ - prajjwal1/discosense
115
+ - circa
116
+ - PiC/phrase_similarity
117
+ - copenlu/scientific-exaggeration-detection
118
+ - quarel
119
+ - mwong/fever-evidence-related
120
+ - numer_sense
121
+ - dynabench/dynasent
122
+ - raquiba/Sarcasm_News_Headline
123
+ - sem_eval_2010_task_8
124
+ - demo-org/auditor_review
125
+ - medmcqa
126
+ - RuyuanWan/Dynasent_Disagreement
127
+ - RuyuanWan/Politeness_Disagreement
128
+ - RuyuanWan/SBIC_Disagreement
129
+ - RuyuanWan/SChem_Disagreement
130
+ - RuyuanWan/Dilemmas_Disagreement
131
+ - lucasmccabe/logiqa
132
+ - wiki_qa
133
+ - tasksource/cycic_classification
134
+ - tasksource/cycic_multiplechoice
135
+ - tasksource/sts-companion
136
+ - tasksource/commonsense_qa_2.0
137
+ - tasksource/lingnli
138
+ - tasksource/monotonicity-entailment
139
+ - tasksource/arct
140
+ - tasksource/scinli
141
+ - tasksource/naturallogic
142
+ - onestop_qa
143
+ - demelin/moral_stories
144
+ - corypaik/prost
145
+ - aps/dynahate
146
+ - metaeval/syntactic-augmentation-nli
147
+ - tasksource/autotnli
148
+ - lasha-nlp/CONDAQA
149
+ - openai/webgpt_comparisons
150
+ - Dahoas/synthetic-instruct-gptj-pairwise
151
+ - metaeval/scruples
152
+ - metaeval/wouldyourather
153
+ - metaeval/defeasible-nli
154
+ - tasksource/help-nli
155
+ - metaeval/nli-veridicality-transitivity
156
+ - tasksource/lonli
157
+ - tasksource/dadc-limit-nli
158
+ - ColumbiaNLP/FLUTE
159
+ - tasksource/strategy-qa
160
+ - openai/summarize_from_feedback
161
+ - tasksource/folio
162
+ - yale-nlp/FOLIO
163
+ - tasksource/tomi-nli
164
+ - tasksource/avicenna
165
+ - stanfordnlp/SHP
166
+ - GBaker/MedQA-USMLE-4-options-hf
167
+ - sileod/wikimedqa
168
+ - declare-lab/cicero
169
+ - amydeng2000/CREAK
170
+ - tasksource/mutual
171
+ - inverse-scaling/NeQA
172
+ - inverse-scaling/quote-repetition
173
+ - inverse-scaling/redefine-math
174
+ - tasksource/puzzte
175
+ - tasksource/implicatures
176
+ - race
177
+ - tasksource/race-c
178
+ - tasksource/spartqa-yn
179
+ - tasksource/spartqa-mchoice
180
+ - tasksource/temporal-nli
181
+ - riddle_sense
182
+ - tasksource/clcd-english
183
+ - maximedb/twentyquestions
184
+ - metaeval/reclor
185
+ - tasksource/counterfactually-augmented-imdb
186
+ - tasksource/counterfactually-augmented-snli
187
+ - metaeval/cnli
188
+ - tasksource/boolq-natural-perturbations
189
+ - metaeval/acceptability-prediction
190
+ - metaeval/equate
191
+ - tasksource/ScienceQA_text_only
192
+ - Jiangjie/ekar_english
193
+ - tasksource/implicit-hate-stg1
194
+ - metaeval/chaos-mnli-ambiguity
195
+ - IlyaGusev/headline_cause
196
+ - tasksource/logiqa-2.0-nli
197
+ - tasksource/oasst2_dense_flat
198
+ - sileod/mindgames
199
+ - metaeval/ambient
200
+ - metaeval/path-naturalness-prediction
201
+ - civil_comments
202
+ - AndyChiang/cloth
203
+ - AndyChiang/dgen
204
+ - tasksource/I2D2
205
+ - webis/args_me
206
+ - webis/Touche23-ValueEval
207
+ - tasksource/starcon
208
+ - PolyAI/banking77
209
+ - tasksource/ConTRoL-nli
210
+ - tasksource/tracie
211
+ - tasksource/sherliic
212
+ - tasksource/sen-making
213
+ - tasksource/winowhy
214
+ - tasksource/robustLR
215
+ - CLUTRR/v1
216
+ - tasksource/logical-fallacy
217
+ - tasksource/parade
218
+ - tasksource/cladder
219
+ - tasksource/subjectivity
220
+ - tasksource/MOH
221
+ - tasksource/VUAC
222
+ - tasksource/TroFi
223
+ - sharc_modified
224
+ - tasksource/conceptrules_v2
225
+ - metaeval/disrpt
226
+ - tasksource/zero-shot-label-nli
227
+ - tasksource/com2sense
228
+ - tasksource/scone
229
+ - tasksource/winodict
230
+ - tasksource/fool-me-twice
231
+ - tasksource/monli
232
+ - tasksource/corr2cause
233
+ - lighteval/lsat_qa
234
+ - tasksource/apt
235
+ - zeroshot/twitter-financial-news-sentiment
236
+ - tasksource/icl-symbol-tuning-instruct
237
+ - tasksource/SpaceNLI
238
+ - sihaochen/propsegment
239
+ - HannahRoseKirk/HatemojiBuild
240
+ - tasksource/regset
241
+ - tasksource/esci
242
+ - lmsys/chatbot_arena_conversations
243
+ - neurae/dnd_style_intents
244
+ - hitachi-nlp/FLD.v2
245
+ - tasksource/SDOH-NLI
246
+ - allenai/scifact_entailment
247
+ - tasksource/feasibilityQA
248
+ - tasksource/simple_pair
249
+ - tasksource/AdjectiveScaleProbe-nli
250
+ - tasksource/resnli
251
+ - tasksource/SpaRTUN
252
+ - tasksource/ReSQ
253
+ - tasksource/semantic_fragments_nli
254
+ - MoritzLaurer/dataset_train_nli
255
+ - tasksource/stepgame
256
+ - tasksource/nlgraph
257
+ - tasksource/oasst2_pairwise_rlhf_reward
258
+ - tasksource/hh-rlhf
259
+ - tasksource/ruletaker
260
+ - qbao775/PARARULE-Plus
261
+ - tasksource/proofwriter
262
+ - tasksource/logical-entailment
263
+ - tasksource/nope
264
+ - tasksource/LogicNLI
265
+ - kiddothe2b/contract-nli
266
+ - AshtonIsNotHere/nli4ct_semeval2024
267
+ - tasksource/lsat-ar
268
+ - tasksource/lsat-rc
269
+ - AshtonIsNotHere/biosift-nli
270
+ - tasksource/brainteasers
271
+ - Anthropic/persuasion
272
+ - erbacher/AmbigNQ-clarifying-question
273
+ - tasksource/SIGA-nli
274
+ - unigram/FOL-nli
275
+ - tasksource/goal-step-wikihow
276
+ - GGLab/PARADISE
277
+ - tasksource/doc-nli
278
+ - tasksource/mctest-nli
279
+ - tasksource/patent-phrase-similarity
280
+ - tasksource/natural-language-satisfiability
281
+ - tasksource/idioms-nli
282
+ - tasksource/lifecycle-entailment
283
+ - nvidia/HelpSteer
284
+ - nvidia/HelpSteer2
285
+ - sadat2307/MSciNLI
286
+ - pushpdeep/UltraFeedback-paired
287
+ - tasksource/AES2-essay-scoring
288
+ - tasksource/english-grading
289
+ - tasksource/wice
290
+ - Dzeniks/hover
291
+ - tasksource/tasksource_dpo_pairs
292
+ library_name: transformers
293
+ pipeline_tag: zero-shot-classification
294
+ tags:
295
+ - text-classification
296
+ - zero-shot-classification
297
+ license: apache-2.0
298
+ ---
299
+
300
+ # Model Card for Model ID
301
+
302
+ deberta-v3-base with context length of 1280 fine-tuned on tasksource for 250k steps. I oversampled long NLI tasks (ConTRoL, doc-nli).
303
+ Training data include helpsteer v1/v2, logical reasoning tasks (FOLIO, FOL-nli, LogicNLI...), OASST, hh/rlhf, linguistics oriented NLI tasks, tasksource-dpo, fact verification tasks.
304
+
305
+ This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI), and can be used for:
306
+ - Zero-shot entailment-based classification for arbitrary labels [ZS].
307
+ - Natural language inference [NLI]
308
+ - Further fine-tuning on a new task or tasksource task (classification, token classification, reward modeling or multiple-choice) [FT].
309
+
310
+ | dataset | accuracy |
311
+ |:----------------------------|----------------:|
312
+ | anli/a1 | 63.3 |
313
+ | anli/a2 | 47.2 |
314
+ | anli/a3 | 49.4 |
315
+ | nli_fever | 79.4 |
316
+ | FOLIO | 61.8 |
317
+ | ConTRoL-nli | 63.3 |
318
+ | cladder | 71.1 |
319
+ | zero-shot-label-nli | 74.4 |
320
+ | chatbot_arena_conversations | 72.2 |
321
+ | oasst2_pairwise_rlhf_reward | 73.9 |
322
+ | doc-nli | 90.0 |
323
+
324
+ Zero-shot GPT-4 scores 61% on FOLIO (logical reasoning), 62% on cladder (probabilistic reasoning) and 56.4% on ConTRoL (long context NLI).
325
+
326
+ # [ZS] Zero-shot classification pipeline
327
+ ```python
328
+ from transformers import pipeline
329
+ classifier = pipeline("zero-shot-classification",model="tasksource/deberta-base-long-nli")
330
+
331
+ text = "one day I will see the world"
332
+ candidate_labels = ['travel', 'cooking', 'dancing']
333
+ classifier(text, candidate_labels)
334
+ ```
335
+ NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
336
+
337
+ # [NLI] Natural language inference pipeline
338
+
339
+ ```python
340
+ from transformers import pipeline
341
+ pipe = pipeline("text-classification",model="tasksource/deberta-base-long-nli")
342
+ pipe([dict(text='there is a cat',
343
+ text_pair='there is a black cat')]) #list of (premise,hypothesis)
344
+ # [{'label': 'neutral', 'score': 0.9952911138534546}]
345
+ ```
346
+
347
+ # [TA] Tasksource-adapters: 1 line access to hundreds of tasks
348
+
349
+ ```python
350
+ # !pip install tasknet
351
+ import tasknet as tn
352
+ pipe = tn.load_pipeline('tasksource/deberta-base-long-nli','glue/sst2') # works for 500+ tasksource tasks
353
+ pipe(['That movie was great !', 'Awful movie.'])
354
+ # [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}]
355
+ ```
356
+ The list of tasks is available in model config.json.
357
+ This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible.
358
+
359
+
360
+ # [FT] Tasknet: 3 lines fine-tuning
361
+
362
+ ```python
363
+ # !pip install tasknet
364
+ import tasknet as tn
365
+ hparams=dict(model_name='tasksource/deberta-base-long-nli', learning_rate=2e-5)
366
+ model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams)
367
+ trainer.train()
368
+ ```
369
+
370
+
371
+ # Citation
372
+
373
+ More details on this [article:](https://aclanthology.org/2024.lrec-main.1361/)
374
+ ```
375
+ @inproceedings{sileo-2024-tasksource,
376
+ title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework",
377
+ author = "Sileo, Damien",
378
+ editor = "Calzolari, Nicoletta and
379
+ Kan, Min-Yen and
380
+ Hoste, Veronique and
381
+ Lenci, Alessandro and
382
+ Sakti, Sakriani and
383
+ Xue, Nianwen",
384
+ booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
385
+ month = may,
386
+ year = "2024",
387
+ address = "Torino, Italia",
388
+ publisher = "ELRA and ICCL",
389
+ url = "https://aclanthology.org/2024.lrec-main.1361",
390
+ pages = "15655--15684",
391
+ }
392
+ ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "tasksource/deberta-base-long-nli",
3
  "architectures": [
4
  "DebertaV2ForSequenceClassification"
5
  ],
@@ -1101,7 +1101,7 @@
1101
  "blimp-2"
1102
  ],
1103
  "torch_dtype": "float32",
1104
- "transformers_version": "4.41.2",
1105
  "type_vocab_size": 0,
1106
  "vocab_size": 128100
1107
  }
 
1
  {
2
+ "_name_or_path": "microsoft/deberta-v3-base",
3
  "architectures": [
4
  "DebertaV2ForSequenceClassification"
5
  ],
 
1101
  "blimp-2"
1102
  ],
1103
  "torch_dtype": "float32",
1104
+ "transformers_version": "4.42.3",
1105
  "type_vocab_size": 0,
1106
  "vocab_size": 128100
1107
  }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71cace06873870322ffa93e4005999961cef6d6b08263b01aad832ded23d94ae
3
+ size 737722356
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd8a820f52d46be08416c5449b75d75f4a9cd498f9130ad723dced4dedd3fc3e
3
+ size 738566384
special_tokens_map.json CHANGED
@@ -1,46 +1,10 @@
1
  {
2
- "bos_token": {
3
- "content": "[CLS]",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "[CLS]",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "[SEP]",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "[MASK]",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "[PAD]",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "[SEP]",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
  "unk_token": {
45
  "content": "[UNK]",
46
  "lstrip": false,
 
1
  {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  "unk_token": {
9
  "content": "[UNK]",
10
  "lstrip": false,
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -47,19 +47,12 @@
47
  "do_lower_case": false,
48
  "eos_token": "[SEP]",
49
  "mask_token": "[MASK]",
50
- "max_length": 1280,
51
  "model_max_length": 1000000000000000019884624838656,
52
- "pad_to_multiple_of": null,
53
  "pad_token": "[PAD]",
54
- "pad_token_type_id": 0,
55
- "padding_side": "right",
56
  "sep_token": "[SEP]",
57
  "sp_model_kwargs": {},
58
  "split_by_punct": false,
59
- "stride": 0,
60
  "tokenizer_class": "DebertaV2Tokenizer",
61
- "truncation_side": "right",
62
- "truncation_strategy": "longest_first",
63
  "unk_token": "[UNK]",
64
  "vocab_type": "spm"
65
  }
 
47
  "do_lower_case": false,
48
  "eos_token": "[SEP]",
49
  "mask_token": "[MASK]",
 
50
  "model_max_length": 1000000000000000019884624838656,
 
51
  "pad_token": "[PAD]",
 
 
52
  "sep_token": "[SEP]",
53
  "sp_model_kwargs": {},
54
  "split_by_punct": false,
 
55
  "tokenizer_class": "DebertaV2Tokenizer",
 
 
56
  "unk_token": "[UNK]",
57
  "vocab_type": "spm"
58
  }