Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +1 -1
- ppo-LunarLander-v2/data +18 -18
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 261.45 +/- 28.86
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79009c3ab880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79009c3ab910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79009c3ab9a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79009c3aba30>", "_build": "<function ActorCriticPolicy._build at 0x79009c3abac0>", "forward": "<function ActorCriticPolicy.forward at 0x79009c3abb50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79009c3abbe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79009c3abc70>", "_predict": "<function ActorCriticPolicy._predict at 0x79009c3abd00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79009c3abd90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79009c3abe20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79009c3abeb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79009c555cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709879147028537053, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoxgjt9ZYg/vuqBPbFa17715JE7n1YnPAAAAAAAAAAAmq4tvfZgZrpjWY45RLueM8ta/rrFVKW4AACAPwAAgD/6OFY+MmGwP9I7Dz89Es6+0ptpPkI/bT4AAAAAAAAAACDZzD7jHUA/sKu3vAWR1b6yNAg+xQNUvgAAAAAAAAAAwGMMPpcYXj+9nuU9wRqkvilGGj5Su4W9AAAAAAAAAABt9Vs+h2MEPt6FQb7d01++Y+FGPPcjQb0AAAAAAAAAANpaLr7AldA+VUOqPauHrL6tckK8IGcCPgAAAAAAAAAAZrJXPPAUuj870EI+jcREPgMFdbzadS69AAAAAAAAAADaaJU9pHAPOE7LnjJ0s4QwvvUCPNCkHLMAAIA/AACAPzPRdz6VSBg/RXWBvuMQl76BRzc8vrKzvQAAAAAAAAAAzassvk8MO7wohVe8K+GYujK6rD3+jXo7AACAPwAAgD+zTnU947ljPa/PRL1lgEi+PI+oPOAtZb0AAAAAAAAAAA1mjz34fIY+WtKCvMAUcr6751Y9q67bPAAAAAAAAAAAAKdSPSkIV7q9xF8zu89wr8Hb8TjrncGzAACAPwAAgD/mxr0+VnskP7MbEb4k3de+0VkhPrLypr0AAAAAAAAAAJo7NTzS4Zy7l/IsvIYGgT3/9tm8AxHlOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2RFaKUFB+MAWyUTRwBjAF0lEdAkVxSuMdcS3V9lChoBkdAcYJlXiiqQ2gHTZsBaAhHQJFcrUI9kjJ1fZQoaAZHQG29nvttyghoB00jAWgIR0CRXKzJp35fdX2UKGgGR0BskLKLbYbsaAdNMQFoCEdAkV0c98qnWXV9lChoBkdAcUVQJHAh0WgHTVQBaAhHQJFddj8UEgZ1fZQoaAZHQHCznerMkhRoB01HAWgIR0CRcUimEXchdX2UKGgGR0BwRK8K5TZQaAdNLgFoCEdAkXG3wPRRdnV9lChoBkdAbeCi0v4/NmgHTSABaAhHQJFx5HPNVzZ1fZQoaAZHQG0z/iPyTZBoB00PAWgIR0CRdCCE6DGtdX2UKGgGR0BwZWfg75mAaAdNSgFoCEdAkXT21x82JnV9lChoBkdAa3N5IH1OCWgHTT4BaAhHQJF1uTPjXFt1fZQoaAZHQHAiEDdP+GZoB00hAWgIR0CRdnLuQZGbdX2UKGgGR0Bx6bC/GlyjaAdNAgFoCEdAkXZ+kpI+XHV9lChoBkdAcErvyLAHmmgHTQ0BaAhHQJF3XPmgam51fZQoaAZHQG5vR6nivPloB00qAWgIR0CRd4TWGyoodX2UKGgGR0BvN/wEyLydaAdNMwFoCEdAkXioKIBRynV9lChoBkdAbPAGsV+I/WgHTTQBaAhHQJF5REofCAN1fZQoaAZHQHF81oUSIxhoB00pAWgIR0CReVvECNjtdX2UKGgGR0BtL/FaSs8xaAdNKQFoCEdAkXtE8eS0SnV9lChoBkdAboIlqrR0EGgHTRwBaAhHQJF7Xyup0fZ1fZQoaAZHQHBr8q4H5ahoB00lAWgIR0CRe9h86V+rdX2UKGgGR0ByecLPUrkKaAdN9wFoCEdAkXvuZ9d/rnV9lChoBkdAcC4tBOYYzmgHTRgBaAhHQJF9j6oESuh1fZQoaAZHQHAnSTINmUZoB004AWgIR0CRf44dIXj3dX2UKGgGR0BuhiU7jkuIaAdNMQFoCEdAkYAa5LAYYXV9lChoBkdAb3rowEhaDGgHTR4BaAhHQJGAJHz6JqJ1fZQoaAZHQDvL0Yj0L+hoB0vpaAhHQJGAfi2lVLl1fZQoaAZHQHCp8bvPTodoB00QAWgIR0CRgIYEGJN1dX2UKGgGR0BwQ/Z5AyEdaAdNDwFoCEdAkYJYWP91l3V9lChoBkdASvmgrYoRZmgHTRQBaAhHQJGCngQ6IWR1fZQoaAZHQG+QLHuJDVpoB00OAWgIR0CRhTEd/8VIdX2UKGgGR0BxHq1lXiiqaAdNcAFoCEdAkYizkU9IPXV9lChoBkdAcFoUhFEy+GgHTXMBaAhHQJGIwJmdy1h1fZQoaAZHQHBbrRSgoPVoB004AWgIR0CRiXID5j6OdX2UKGgGR0BxX090Rvm6aAdNFgJoCEdAkYnEc4o7WHV9lChoBkdAcTPskY4yXWgHTQ8BaAhHQJGLJGWldkd1fZQoaAZHQHD+JpaiblRoB00TAWgIR0CRi0c5sCT2dX2UKGgGR0ByK7FrEcbSaAdNLwFoCEdAkYtk5Qxes3V9lChoBkdAcBA8jzI3i2gHTaEBaAhHQJGLZkRSP2h1fZQoaAZHQF+bh0Qsf7toB03oA2gIR0CRi4Aood+5dX2UKGgGR0BtWu4Vh1DCaAdNTAFoCEdAkYzBKpT/AHV9lChoBkdAcqqbayrxRWgHTRUBaAhHQJGNFhoduHh1fZQoaAZHQHCtduHerMloB00QAWgIR0CRjSrfcer/dX2UKGgGR0Bv1RUBGQS0aAdNZAFoCEdAkY1rjHXEqHV9lChoBkdAVvk0Kqn3tmgHTegDaAhHQJGPjbGm1pl1fZQoaAZHQHKCgXMyJsRoB00pAWgIR0CRj+B8hLXddX2UKGgGR0Bt78QI2OyWaAdNKAFoCEdAkZKedGy5Z3V9lChoBkdAcl/YSxqwhWgHTRoBaAhHQJGSs1WKdhB1fZQoaAZHQHAXtS2phndoB01JAWgIR0CRp0SZ0CA+dX2UKGgGR0BwnuIHkcS5aAdNDQFoCEdAkad9M9KVZHV9lChoBkdAc0iVGTcIq2gHTRgBaAhHQJGn7Cj1wo91fZQoaAZHQHDRZ8v24/hoB00iAWgIR0CRqKgOz6acdX2UKGgGR0BwhLvVmSQpaAdNQwFoCEdAkaoHVG0/nnV9lChoBkdAcqNTsY2sJmgHTQgBaAhHQJGqGiEg4fh1fZQoaAZHQHEFiJfpljFoB00MAWgIR0CRqqNJvo/zdX2UKGgGR0Bxzo93bEgoaAdNTQFoCEdAkaqszEaVEHV9lChoBkdAbZAu8K5TZWgHTUMBaAhHQJGsEo3Jgb91fZQoaAZHQHAdT90ihWZoB01eAWgIR0CRrHqzqrzYdX2UKGgGR0BkF1HFxXGPaAdN6ANoCEdAka5tmYjSonV9lChoBkdAcNb9/jKgZmgHTUsBaAhHQJGvHMnqmj11fZQoaAZHQHHf4UFjd59oB00RAWgIR0CRsDQQL/jsdX2UKGgGR0ByIuoJiRW+aAdNfAFoCEdAkbEqk690zXV9lChoBkdAKHy/9Hc1wmgHS+NoCEdAkbG9G7SRbXV9lChoBkdAb3aSqU/wAmgHTUEBaAhHQJGyHCemNzd1fZQoaAZHQHD+piNKh+RoB00xAWgIR0CRssSoOx0NdX2UKGgGR0BxHeznied1aAdNMQFoCEdAkbLpyIYWL3V9lChoBkdAcjNYpDu0C2gHTT4BaAhHQJGzlPk7wKB1fZQoaAZHQHCl3C4z7/JoB00LAWgIR0CRs9dgfEGadX2UKGgGR0BywjdRBNVSaAdNOwFoCEdAkbPoKc/dI3V9lChoBkdAbDznbqQiimgHTSgBaAhHQJG0Hwd8zAN1fZQoaAZHQGvD1C5VfeFoB00wAWgIR0CRtNqPwNLEdX2UKGgGR0Bx94z3yqdZaAdNGwFoCEdAkbWRSgoPTXV9lChoBkdAcJaESdvsJWgHTSoBaAhHQJG2XnKW9lF1fZQoaAZHQHHWc8cMmWtoB00pAWgIR0CRuERA8jiXdX2UKGgGR0Bysb0163RYaAdNDwFoCEdAkbrBUNrj53V9lChoBkdAcBp1FH8TBmgHTScBaAhHQJG7M6jnFHd1fZQoaAZHQHF7pqEeyRloB01oAWgIR0CRu4OFg2IgdX2UKGgGR0BxFSNkvsZ6aAdNTAFoCEdAkbuohUzbe3V9lChoBkdAcle6FuejEmgHTRwBaAhHQJG8RMfzSTh1fZQoaAZHQG2UgM+eOGVoB00xAWgIR0CRvNttQ9A5dX2UKGgGR0ByNczVMEidaAdNBwFoCEdAkbzjdk8RtnV9lChoBkdAcYyhJAdGRWgHTVABaAhHQJG/Pacqe9V1fZQoaAZHQHBe7Vz6rNpoB01ZAWgIR0CRv6RXwLE2dX2UKGgGR0BkX7nTy8SPaAdN6ANoCEdAkcAC2lVLjHV9lChoBkdAceZqptJnQWgHTX8BaAhHQJHAhqrR0EJ1fZQoaAZHQG5Q3/giu+1oB00hAWgIR0CRwJ1rZamodX2UKGgGR0Bxw7gQ6IWQaAdNbQFoCEdAkcFLhNucc3V9lChoBkdAcUZyzHCGe2gHTXMBaAhHQJHCK5vtMPB1fZQoaAZHQHKAt8ma6SVoB00cAWgIR0CRwjcSXdCWdX2UKGgGR0BwDSE8JUo8aAdNCAFoCEdAkcPKUA1ejXV9lChoBkdAbcPOD8LromgHTQwBaAhHQJHEK+evpyJ1fZQoaAZHQG1H9Esrd31oB00yAWgIR0CRxL0cOskqdX2UKGgGR0BugZTKkl/paAdNNAFoCEdAkcWML0BfbHV9lChoBkdAcQRopx3mm2gHTR4BaAhHQJHF8k3S8ap1fZQoaAZHQHI++XzDn/1oB000AWgIR0CRxuhqCYkWdX2UKGgGR0BwGbgpBomHaAdNUwFoCEdAkceDq8lHBnV9lChoBkdAcZ/JYDDCQGgHTRwBaAhHQJHInpxFRYR1fZQoaAZHQGxjccuJ1q5oB00hAWgIR0CRydLV4HHFdX2UKGgGR0Bw9YwAU+LWaAdNLQFoCEdAkcnfmozeoHV9lChoBkdAcOlM0xdpqWgHTRMBaAhHQJHLBcKPXCl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e2915700820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e29157008b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e2915700940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e29157009d0>", "_build": "<function ActorCriticPolicy._build at 0x7e2915700a60>", "forward": "<function ActorCriticPolicy.forward at 0x7e2915700af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e2915700b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e2915700c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7e2915700ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e2915700d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e2915700dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e2915700e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e291defbb80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710015575582226844, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDM1r1ITYW6bjXXu/0LWzWtjAo7fIbKtAAAgD8AAAAAZtC/PTLAoT/miBA/Md7HvsG/HL3leCA9AAAAAAAAAACABgm9yMmZP0pZ8L3y2Zi+FymXult5Ur0AAAAAAAAAAA16Or6j3D8/HzYPPpc5ar6kWu28er2aPQAAAAAAAAAAGv89ve/uQz4sS5e9+p6DvmMwQr1l5HE9AAAAAAAAAAAzusa8juS/Pw1g5r3F+Pu9t+cBvaOLzTsAAAAAAAAAAM2EprxpVDk9wtmJvR5bbr4PcVy9qxiuOwAAAAAAAAAAI5yBvkDHsT/m+xK/ez2hvu5Xub6Ku+G9AAAAAAAAAABmkw0+u7lAP+u62Dv0U5G+Y6eaPdTFqD0AAAAAAAAAAJo6TT0n8HY+I19Svebcmr4s9fc892KJvAAAAAAAAAAApsSQvUSl1T2tF7U8CuYrvs1JkbyjMk87AAAAAAAAAACzaLS9XEsVuhGKpbmV3h20/mBOu2NcwDgAAAAAAACAP8b6hr5NX0E/LvsGPhLQX75gan29qPSmPQAAAAAAAAAAM1nlvB94i7tsFA2+tWykveL18TyObBc/AACAPwAAgD8gpms+tCH1PujW576GH6a+NallPOXNn74AAAAAAAAAALPFJT7N/F8/Ll6hvbVwpL529ak9FORHvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0XPci4axaMAWyUTTsBjAF0lEdAlEspgPVd5nV9lChoBkdAcDGjVx0dR2gHTRsBaAhHQJRLtUfgaWJ1fZQoaAZHQHE8U6cRUWFoB01XAWgIR0CUTIOmixmkdX2UKGgGR0Bxh8c81XNkaAdNawFoCEdAlEzJ1zQu3HV9lChoBkdAb3LVCHARCmgHTUsBaAhHQJRPNfZ26kJ1fZQoaAZHQHAsWU4aP0ZoB02IAWgIR0CUT08Hv+fidX2UKGgGR0Bx2LSNOuaGaAdNNgFoCEdAlE9d21UlzHV9lChoBkdATLSLZSNwSGgHS9ZoCEdAlFBAUlAu7HV9lChoBkdAbO95hz/6wmgHTUkBaAhHQJRQYHqu8sd1fZQoaAZHQHFrR3A2ycFoB001AWgIR0CUUOsT37DVdX2UKGgGR0BwOFMnJDE4aAdNLQFoCEdAlFFDwH7gsXV9lChoBkdAcixZTAFgUmgHTR4BaAhHQJRSG8yvcJt1fZQoaAZHQGLN1lwtJ4BoB03oA2gIR0CUUx4axX4kdX2UKGgGR0Bw0d2aDwpfaAdNOQFoCEdAlFSn0Gu9vnV9lChoBkdAa4sK6WgOBmgHTTkBaAhHQJRVdyyUs4F1fZQoaAZHQG/tE2Hck+poB008AWgIR0CUVfX7+DODdX2UKGgGR0BxhG5NGmUGaAdNUQFoCEdAlFZCjk+5fHV9lChoBkdAbl5PY4ACGWgHTTABaAhHQJRWT4SHuZ11fZQoaAZHQHGQElRgqmVoB00/AWgIR0CUVwbR4QjEdX2UKGgGR0BySPPLPldUaAdNowFoCEdAlFc00elsQHV9lChoBkdAb7KErXlKb2gHTRgBaAhHQJRX8+iaiK11fZQoaAZHQHCHBk/bCaZoB00yAWgIR0CUWPZUT+NtdX2UKGgGR0Bv9gHxBmf5aAdNHgFoCEdAlFldzOoo/nV9lChoBkdAcSJqUeMho2gHTUoBaAhHQJRZrGp++dt1fZQoaAZHQG9I2UbDMvBoB004AWgIR0CUWgY6nzg/dX2UKGgGR0BwxutlqagFaAdNOgFoCEdAlFqjlcQiA3V9lChoBkdAcMu1klNUO2gHTVIBaAhHQJRbqpkwvg51fZQoaAZHQHBB65sj3VVoB004AWgIR0CUW8d+5OJtdX2UKGgGR0BwfhiG34KyaAdNXAFoCEdAlF31rZamoHV9lChoBkdAb7iVk+X7cmgHTRwBaAhHQJReq+K0lZ51fZQoaAZHQG8GLuYx+KFoB00+AWgIR0CUX10m+j/NdX2UKGgGR0BzPsZhrnDBaAdNZAFoCEdAlF/Xu3MINXV9lChoBkdAcPKgFotcwGgHTT8BaAhHQJRgHsmfGuN1fZQoaAZHQHC5vZM+NcZoB00yAWgIR0CUYKi0OVgQdX2UKGgGR0Bxw9HavicYaAdNOwFoCEdAlGDHVLBbfXV9lChoBkdAcavrQgLZz2gHTRwBaAhHQJRgx9ZzPrx1fZQoaAZHQEBhsiSq2jRoB0vsaAhHQJRg6LcbiqB1fZQoaAZHQHI/FenhsIpoB01aAWgIR0CUYP0Dlo12dX2UKGgGR0BwqR08vEjxaAdNGQFoCEdAlGFprgwXZXV9lChoBkdAcUqA57w8XGgHTRcBaAhHQJRiMldC3PR1fZQoaAZHQHGlv0RODapoB00wAWgIR0CUYkKIznA7dX2UKGgGR0BtPOK/EfknaAdNLQFoCEdAlGNHaews5HV9lChoBkdAbKapz90ihWgHTTQBaAhHQJRkg3kxREZ1fZQoaAZHQHCgAQtjCpFoB01xAWgIR0CUZmqslsxgdX2UKGgGR0BudTGNrCWNaAdNIAFoCEdAlGexUWEbpHV9lChoBkdAbFDdl/Yra2gHTUoBaAhHQJRnuzdDYyx1fZQoaAZHQHKBIlyBCldoB00UAWgIR0CUZ9DzRQaadX2UKGgGR0Bywi7mMfihaAdNSgFoCEdAlGh0PQOWjXV9lChoBkdAb8BYA80UGmgHTRMBaAhHQJRoxPsRg7Z1fZQoaAZHQG8wPqcEvCdoB00fAWgIR0CUaR0Fr2xqdX2UKGgGR0ByUgYtQKrraAdNIgFoCEdAlGmIQWepXXV9lChoBkdAbmPCuU2UCGgHTSsBaAhHQJRpkjbBXS11fZQoaAZHQHFcawhW5pdoB00/AWgIR0CUhTWbPQfIdX2UKGgGR0BuOANPP9k0aAdNSwFoCEdAlIY/En9ehXV9lChoBkdAcHuK3d9DyGgHTUcBaAhHQJSHGwpvxYt1fZQoaAZHQHMPKvRqoIhoB01mAWgIR0CUiB9fkWAPdX2UKGgGR0BzSlCNS619aAdNKgFoCEdAlIkJhnanJnV9lChoBkdAbzKPK+zt1WgHTXUBaAhHQJSKDkQwsXl1fZQoaAZHQHKUfvv0AcVoB00lAWgIR0CUitxusLfDdX2UKGgGR0BxS7BN21UmaAdNGgFoCEdAlIupg1FYuHV9lChoBkdAcJ3tcv/R3WgHTRwBaAhHQJSMlEv0yxl1fZQoaAZHQHIv7Io3JgdoB00EAWgIR0CUjOC04R29dX2UKGgGR0BxO+f8MuvmaAdNWwFoCEdAlI47PdEb53V9lChoBkdAa9qsFMZgomgHTT4BaAhHQJSOjQ0GeMB1fZQoaAZHQG+sWfChvitoB01VAWgIR0CUjw0fHPu5dX2UKGgGR0BwZW1Bt1p1aAdNJwFoCEdAlI8ia7VawHV9lChoBkdAcLoLuQZGa2gHTWMBaAhHQJSQOQRwqAl1fZQoaAZHQG8dxyn1nNBoB003AWgIR0CUkK1uzhP1dX2UKGgGR0BydFm5DqnnaAdNJAFoCEdAlJEAQ176YXV9lChoBkdAccq/JeVs12gHTR4BaAhHQJSRzGwRoRJ1fZQoaAZHQGv9EE1VHWloB01dAWgIR0CUlSNYKYzBdX2UKGgGR0ByCHK8tf5UaAdNMQFoCEdAlJVyeI2wV3V9lChoBkdAcfSMAFPi1mgHTSIBaAhHQJSVvkuHvc91fZQoaAZHQHEZe85CF9NoB01hAWgIR0CUlmCV8kUsdX2UKGgGR0By58g6ltTDaAdL+2gIR0CUlteQ+2VndX2UKGgGR0BtltdxAB1caAdNQAFoCEdAlJfFGb1AaHV9lChoBkdAbt+fjjrAxmgHTUABaAhHQJSYEzl90A91fZQoaAZHQG/ezH80k4ZoB00vAWgIR0CUmaLOAy2ydX2UKGgGR0ByHkbVBlcyaAdNFQFoCEdAlJoZPdl/Y3V9lChoBkdAcKQQqZtvXWgHTVEBaAhHQJSaa+K0lZ51fZQoaAZHQG8dALApKBdoB01SAWgIR0CUmvttALRbdX2UKGgGR0ByHvqUu+RHaAdNGAFoCEdAlJsP0I1LrXV9lChoBkdAXoaWhRIjGGgHTegDaAhHQJSbpXYDklx1fZQoaAZHQGuvCBPKuCBoB00pAWgIR0CUnFx+rlvIdX2UKGgGR0BtsVrGipNsaAdNXAFoCEdAlJzCgK4QSXV9lChoBkdAcdgQwK0D2mgHTRIDaAhHQJSdIJmdy1h1fZQoaAZHQHDv43aSLZVoB00VAWgIR0CUn2D+BH09dX2UKGgGR0Byl6TvAoG6aAdNLgFoCEdAlJ9rUTcqOXV9lChoBkdAcbvCDVYp2GgHTUoBaAhHQJSgC1gH/tJ1fZQoaAZHQHEI/mxMWXVoB00sAWgIR0CUoIuuRs/IdX2UKGgGR0BukrFXJYDDaAdNUgFoCEdAlKDUI1LrX3V9lChoBkdAb87+3pfQbGgHTWMBaAhHQJSjkZccENh1fZQoaAZHQG7RzyauwHJoB00oAWgIR0CUo8Gpda+wdX2UKGgGR0Bt9Mi4axX5aAdNNgFoCEdAlKPhXS0BwXV9lChoBkdAcYrH5JsfrGgHTRkBaAhHQJSkbcEeQuF1fZQoaAZHQHC8o9ovi99oB01CAWgIR0CUpV+UyHmBdX2UKGgGR0Bw4cMOPNmlaAdNQQFoCEdAlKcrY02tMnV9lChoBkdAbqdG/etSymgHTTkBaAhHQJSn7TEzfrN1fZQoaAZHQHCT/PTodMloB00tAWgIR0CUqAaews5GdX2UKGgGR0Bu8pWHUMG5aAdNcQFoCEdAlKhePJaJRHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 148084
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2bb92cb4b9d0a4ec0c14d6d52376aa93ef8c2554c0a1ae8f5a29bda391b1fbf
|
3 |
size 148084
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,13 +45,13 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -84,7 +84,7 @@
|
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e2915700820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e29157008b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e2915700940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e29157009d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e2915700a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e2915700af0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e2915700b80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e2915700c10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e2915700ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e2915700d30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e2915700dc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e2915700e50>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e291defbb80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1710015575582226844,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDM1r1ITYW6bjXXu/0LWzWtjAo7fIbKtAAAgD8AAAAAZtC/PTLAoT/miBA/Md7HvsG/HL3leCA9AAAAAAAAAACABgm9yMmZP0pZ8L3y2Zi+FymXult5Ur0AAAAAAAAAAA16Or6j3D8/HzYPPpc5ar6kWu28er2aPQAAAAAAAAAAGv89ve/uQz4sS5e9+p6DvmMwQr1l5HE9AAAAAAAAAAAzusa8juS/Pw1g5r3F+Pu9t+cBvaOLzTsAAAAAAAAAAM2EprxpVDk9wtmJvR5bbr4PcVy9qxiuOwAAAAAAAAAAI5yBvkDHsT/m+xK/ez2hvu5Xub6Ku+G9AAAAAAAAAABmkw0+u7lAP+u62Dv0U5G+Y6eaPdTFqD0AAAAAAAAAAJo6TT0n8HY+I19Svebcmr4s9fc892KJvAAAAAAAAAAApsSQvUSl1T2tF7U8CuYrvs1JkbyjMk87AAAAAAAAAACzaLS9XEsVuhGKpbmV3h20/mBOu2NcwDgAAAAAAACAP8b6hr5NX0E/LvsGPhLQX75gan29qPSmPQAAAAAAAAAAM1nlvB94i7tsFA2+tWykveL18TyObBc/AACAPwAAgD8gpms+tCH1PujW576GH6a+NallPOXNn74AAAAAAAAAALPFJT7N/F8/Ll6hvbVwpL529ak9FORHvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0XPci4axaMAWyUTTsBjAF0lEdAlEspgPVd5nV9lChoBkdAcDGjVx0dR2gHTRsBaAhHQJRLtUfgaWJ1fZQoaAZHQHE8U6cRUWFoB01XAWgIR0CUTIOmixmkdX2UKGgGR0Bxh8c81XNkaAdNawFoCEdAlEzJ1zQu3HV9lChoBkdAb3LVCHARCmgHTUsBaAhHQJRPNfZ26kJ1fZQoaAZHQHAsWU4aP0ZoB02IAWgIR0CUT08Hv+fidX2UKGgGR0Bx2LSNOuaGaAdNNgFoCEdAlE9d21UlzHV9lChoBkdATLSLZSNwSGgHS9ZoCEdAlFBAUlAu7HV9lChoBkdAbO95hz/6wmgHTUkBaAhHQJRQYHqu8sd1fZQoaAZHQHFrR3A2ycFoB001AWgIR0CUUOsT37DVdX2UKGgGR0BwOFMnJDE4aAdNLQFoCEdAlFFDwH7gsXV9lChoBkdAcixZTAFgUmgHTR4BaAhHQJRSG8yvcJt1fZQoaAZHQGLN1lwtJ4BoB03oA2gIR0CUUx4axX4kdX2UKGgGR0Bw0d2aDwpfaAdNOQFoCEdAlFSn0Gu9vnV9lChoBkdAa4sK6WgOBmgHTTkBaAhHQJRVdyyUs4F1fZQoaAZHQG/tE2Hck+poB008AWgIR0CUVfX7+DODdX2UKGgGR0BxhG5NGmUGaAdNUQFoCEdAlFZCjk+5fHV9lChoBkdAbl5PY4ACGWgHTTABaAhHQJRWT4SHuZ11fZQoaAZHQHGQElRgqmVoB00/AWgIR0CUVwbR4QjEdX2UKGgGR0BySPPLPldUaAdNowFoCEdAlFc00elsQHV9lChoBkdAb7KErXlKb2gHTRgBaAhHQJRX8+iaiK11fZQoaAZHQHCHBk/bCaZoB00yAWgIR0CUWPZUT+NtdX2UKGgGR0Bv9gHxBmf5aAdNHgFoCEdAlFldzOoo/nV9lChoBkdAcSJqUeMho2gHTUoBaAhHQJRZrGp++dt1fZQoaAZHQG9I2UbDMvBoB004AWgIR0CUWgY6nzg/dX2UKGgGR0BwxutlqagFaAdNOgFoCEdAlFqjlcQiA3V9lChoBkdAcMu1klNUO2gHTVIBaAhHQJRbqpkwvg51fZQoaAZHQHBB65sj3VVoB004AWgIR0CUW8d+5OJtdX2UKGgGR0BwfhiG34KyaAdNXAFoCEdAlF31rZamoHV9lChoBkdAb7iVk+X7cmgHTRwBaAhHQJReq+K0lZ51fZQoaAZHQG8GLuYx+KFoB00+AWgIR0CUX10m+j/NdX2UKGgGR0BzPsZhrnDBaAdNZAFoCEdAlF/Xu3MINXV9lChoBkdAcPKgFotcwGgHTT8BaAhHQJRgHsmfGuN1fZQoaAZHQHC5vZM+NcZoB00yAWgIR0CUYKi0OVgQdX2UKGgGR0Bxw9HavicYaAdNOwFoCEdAlGDHVLBbfXV9lChoBkdAcavrQgLZz2gHTRwBaAhHQJRgx9ZzPrx1fZQoaAZHQEBhsiSq2jRoB0vsaAhHQJRg6LcbiqB1fZQoaAZHQHI/FenhsIpoB01aAWgIR0CUYP0Dlo12dX2UKGgGR0BwqR08vEjxaAdNGQFoCEdAlGFprgwXZXV9lChoBkdAcUqA57w8XGgHTRcBaAhHQJRiMldC3PR1fZQoaAZHQHGlv0RODapoB00wAWgIR0CUYkKIznA7dX2UKGgGR0BtPOK/EfknaAdNLQFoCEdAlGNHaews5HV9lChoBkdAbKapz90ihWgHTTQBaAhHQJRkg3kxREZ1fZQoaAZHQHCgAQtjCpFoB01xAWgIR0CUZmqslsxgdX2UKGgGR0BudTGNrCWNaAdNIAFoCEdAlGexUWEbpHV9lChoBkdAbFDdl/Yra2gHTUoBaAhHQJRnuzdDYyx1fZQoaAZHQHKBIlyBCldoB00UAWgIR0CUZ9DzRQaadX2UKGgGR0Bywi7mMfihaAdNSgFoCEdAlGh0PQOWjXV9lChoBkdAb8BYA80UGmgHTRMBaAhHQJRoxPsRg7Z1fZQoaAZHQG8wPqcEvCdoB00fAWgIR0CUaR0Fr2xqdX2UKGgGR0ByUgYtQKrraAdNIgFoCEdAlGmIQWepXXV9lChoBkdAbmPCuU2UCGgHTSsBaAhHQJRpkjbBXS11fZQoaAZHQHFcawhW5pdoB00/AWgIR0CUhTWbPQfIdX2UKGgGR0BuOANPP9k0aAdNSwFoCEdAlIY/En9ehXV9lChoBkdAcHuK3d9DyGgHTUcBaAhHQJSHGwpvxYt1fZQoaAZHQHMPKvRqoIhoB01mAWgIR0CUiB9fkWAPdX2UKGgGR0BzSlCNS619aAdNKgFoCEdAlIkJhnanJnV9lChoBkdAbzKPK+zt1WgHTXUBaAhHQJSKDkQwsXl1fZQoaAZHQHKUfvv0AcVoB00lAWgIR0CUitxusLfDdX2UKGgGR0BxS7BN21UmaAdNGgFoCEdAlIupg1FYuHV9lChoBkdAcJ3tcv/R3WgHTRwBaAhHQJSMlEv0yxl1fZQoaAZHQHIv7Io3JgdoB00EAWgIR0CUjOC04R29dX2UKGgGR0BxO+f8MuvmaAdNWwFoCEdAlI47PdEb53V9lChoBkdAa9qsFMZgomgHTT4BaAhHQJSOjQ0GeMB1fZQoaAZHQG+sWfChvitoB01VAWgIR0CUjw0fHPu5dX2UKGgGR0BwZW1Bt1p1aAdNJwFoCEdAlI8ia7VawHV9lChoBkdAcLoLuQZGa2gHTWMBaAhHQJSQOQRwqAl1fZQoaAZHQG8dxyn1nNBoB003AWgIR0CUkK1uzhP1dX2UKGgGR0BydFm5DqnnaAdNJAFoCEdAlJEAQ176YXV9lChoBkdAccq/JeVs12gHTR4BaAhHQJSRzGwRoRJ1fZQoaAZHQGv9EE1VHWloB01dAWgIR0CUlSNYKYzBdX2UKGgGR0ByCHK8tf5UaAdNMQFoCEdAlJVyeI2wV3V9lChoBkdAcfSMAFPi1mgHTSIBaAhHQJSVvkuHvc91fZQoaAZHQHEZe85CF9NoB01hAWgIR0CUlmCV8kUsdX2UKGgGR0By58g6ltTDaAdL+2gIR0CUlteQ+2VndX2UKGgGR0BtltdxAB1caAdNQAFoCEdAlJfFGb1AaHV9lChoBkdAbt+fjjrAxmgHTUABaAhHQJSYEzl90A91fZQoaAZHQG/ezH80k4ZoB00vAWgIR0CUmaLOAy2ydX2UKGgGR0ByHkbVBlcyaAdNFQFoCEdAlJoZPdl/Y3V9lChoBkdAcKQQqZtvXWgHTVEBaAhHQJSaa+K0lZ51fZQoaAZHQG8dALApKBdoB01SAWgIR0CUmvttALRbdX2UKGgGR0ByHvqUu+RHaAdNGAFoCEdAlJsP0I1LrXV9lChoBkdAXoaWhRIjGGgHTegDaAhHQJSbpXYDklx1fZQoaAZHQGuvCBPKuCBoB00pAWgIR0CUnFx+rlvIdX2UKGgGR0BtsVrGipNsaAdNXAFoCEdAlJzCgK4QSXV9lChoBkdAcdgQwK0D2mgHTRIDaAhHQJSdIJmdy1h1fZQoaAZHQHDv43aSLZVoB00VAWgIR0CUn2D+BH09dX2UKGgGR0Byl6TvAoG6aAdNLgFoCEdAlJ9rUTcqOXV9lChoBkdAcbvCDVYp2GgHTUoBaAhHQJSgC1gH/tJ1fZQoaAZHQHEI/mxMWXVoB00sAWgIR0CUoIuuRs/IdX2UKGgGR0BukrFXJYDDaAdNUgFoCEdAlKDUI1LrX3V9lChoBkdAb87+3pfQbGgHTWMBaAhHQJSjkZccENh1fZQoaAZHQG7RzyauwHJoB00oAWgIR0CUo8Gpda+wdX2UKGgGR0Bt9Mi4axX5aAdNNgFoCEdAlKPhXS0BwXV9lChoBkdAcYrH5JsfrGgHTRkBaAhHQJSkbcEeQuF1fZQoaAZHQHC8o9ovi99oB01CAWgIR0CUpV+UyHmBdX2UKGgGR0Bw4cMOPNmlaAdNQQFoCEdAlKcrY02tMnV9lChoBkdAbqdG/etSymgHTTkBaAhHQJSn7TEzfrN1fZQoaAZHQHCT/PTodMloB00tAWgIR0CUqAaews5GdX2UKGgGR0Bu8pWHUMG5aAdNcQFoCEdAlKhePJaJRHVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 372,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 6,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c723596f044eb74f4a2b367524aa3f137f21c990ba279edc7f77795cac32bbde
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f85f955633b9e10606fad84d43105dc1f59ef6c53f51ff7ba793e4937ccc9ca6
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 261.44775663727535, "std_reward": 28.861380120651223, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-09T20:42:48.122439"}
|