katuni4ka commited on
Commit
4e667fc
1 Parent(s): 54d4ddf

Upload 11 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 100007,
3
+ "<|LDWANG|>": 100002,
4
+ "<|endofpiece|>": 100001,
5
+ "<|startofpiece|>": 100000,
6
+ "[CLS]": 100006,
7
+ "[MASK]": 100003,
8
+ "[gMASK]": 100004,
9
+ "[sMASK]": 100005
10
+ }
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/ea/work/my_optimum_intel/optimum-intel/aquila-2-7b",
3
+ "architectures": [
4
+ "AquilaForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_aquila.AquilaConfig",
8
+ "AutoModelForCausalLM": "modeling_aquila.AquilaForCausalLM"
9
+ },
10
+ "bos_token_id": 100006,
11
+ "eos_token_id": 100007,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 32,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 86,
16
+ "max_position_embeddings": 64,
17
+ "model_type": "aquila",
18
+ "num_attention_heads": 2,
19
+ "num_hidden_layers": 2,
20
+ "num_key_value_heads": 2,
21
+ "pad_token_id": 0,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "rope_theta": 10000.0,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.40.1",
29
+ "use_cache": true,
30
+ "vocab_size": 100008
31
+ }
configuration_aquila.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ Aquila model configuration"""
21
+
22
+ from transformers import PretrainedConfig
23
+
24
+
25
+
26
+ class AquilaConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`AquilaModel`]. It is used to instantiate an Aquila
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the Aquila-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the Aquila model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`AquilaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
49
+ The non-linear activation function (function or string) in the decoder.
50
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
51
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
52
+ just in case (e.g., 512 or 1024 or 2048).
53
+ initializer_range (`float`, *optional*, defaults to 0.02):
54
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
55
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
56
+ The epsilon used by the rms normalization layers.
57
+ use_cache (`bool`, *optional*, defaults to `True`):
58
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
59
+ relevant if `config.is_decoder=True`.
60
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
61
+ Whether to tie weight embeddings
62
+ Example:
63
+
64
+ ```python
65
+ >>> from transformers import AquilaModel, AquilaConfig
66
+
67
+ >>> # Initializing a Aquila aquila-7b style configuration
68
+ >>> configuration = AquilaConfig()
69
+
70
+ >>> # Initializing a model from the aquila-7b style configuration
71
+ >>> model = AquilaModel(configuration)
72
+
73
+ >>> # Accessing the model configuration
74
+ >>> configuration = model.config
75
+ ```"""
76
+ model_type = "aquila"
77
+ keys_to_ignore_at_inference = ["past_key_values"]
78
+
79
+ def __init__(
80
+ self,
81
+ vocab_size=100008,
82
+ hidden_size=4096,
83
+ intermediate_size=11008,
84
+ num_hidden_layers=32,
85
+ num_attention_heads=32,
86
+ num_key_value_heads=None,
87
+ hidden_act="silu",
88
+ max_position_embeddings=2048,
89
+ initializer_range=0.02,
90
+ rms_norm_eps=1e-6,
91
+ use_cache=True,
92
+ pad_token_id=0,
93
+ bos_token_id=1,
94
+ eos_token_id=2,
95
+ pretraining_tp=1,
96
+ tie_word_embeddings=False,
97
+ rope_theta=10000.0,
98
+ rope_scaling=None,
99
+ **kwargs,
100
+ ):
101
+ self.vocab_size = vocab_size
102
+ self.max_position_embeddings = max_position_embeddings
103
+ self.hidden_size = hidden_size
104
+ self.intermediate_size = intermediate_size
105
+ self.num_hidden_layers = num_hidden_layers
106
+
107
+ # for backward compatibility
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+
111
+ self.num_key_value_heads = num_key_value_heads
112
+
113
+ self.num_attention_heads = num_attention_heads
114
+ self.hidden_act = hidden_act
115
+ self.initializer_range = initializer_range
116
+ self.rms_norm_eps = rms_norm_eps
117
+ self.pretraining_tp = pretraining_tp
118
+ self.use_cache = use_cache
119
+ self.rope_theta = rope_theta
120
+ self.rope_scaling = rope_scaling
121
+
122
+ super().__init__(
123
+ pad_token_id=pad_token_id,
124
+ bos_token_id=bos_token_id,
125
+ eos_token_id=eos_token_id,
126
+ tie_word_embeddings=tie_word_embeddings,
127
+ **kwargs,
128
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100006,
4
+ "eos_token_id": 100007,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.40.1"
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbec4035f4b0f0a9fb05b808bd6d654de2c1af3eb5e14a463f5cf3eda2667c7a
3
+ size 25703736
modeling_aquila.py ADDED
@@ -0,0 +1,1146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Aquila model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ from .configuration_aquila import AquilaConfig
34
+ from transformers import (
35
+ LogitsProcessorList,
36
+ MinLengthLogitsProcessor,
37
+ TopKLogitsWarper,
38
+ TemperatureLogitsWarper,
39
+ TopPLogitsWarper,
40
+ StoppingCriteriaList,
41
+ MaxLengthCriteria,
42
+ BitsAndBytesConfig,
43
+ )
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = "AquilaConfig"
48
+
49
+
50
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
51
+ def _make_causal_mask(
52
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
53
+ ):
54
+ """
55
+ Make causal mask used for bi-directional self-attention.
56
+ """
57
+ bsz, tgt_len = input_ids_shape
58
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
59
+ mask_cond = torch.arange(mask.size(-1), device=device)
60
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
61
+ mask = mask.to(dtype)
62
+
63
+ if past_key_values_length > 0:
64
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
65
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
66
+
67
+
68
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
69
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
70
+ """
71
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
72
+ """
73
+ bsz, src_len = mask.size()
74
+ tgt_len = tgt_len if tgt_len is not None else src_len
75
+
76
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
77
+
78
+ inverted_mask = 1.0 - expanded_mask
79
+
80
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
81
+
82
+
83
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Aquila
84
+ class AquilaRMSNorm(nn.Module):
85
+ def __init__(self, hidden_size, eps=1e-6):
86
+ """
87
+ AquilaRMSNorm is equivalent to T5LayerNorm
88
+ """
89
+ super().__init__()
90
+ self.weight = nn.Parameter(torch.ones(hidden_size))
91
+ self.variance_epsilon = eps
92
+
93
+ def forward(self, hidden_states):
94
+ input_dtype = hidden_states.dtype
95
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
96
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
97
+
98
+ return (self.weight * hidden_states).to(input_dtype)
99
+
100
+
101
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Aquila
102
+ class AquilaRotaryEmbedding(torch.nn.Module):
103
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
104
+ super().__init__()
105
+
106
+ self.dim = dim
107
+ self.max_position_embeddings = max_position_embeddings
108
+ self.base = base
109
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
110
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
111
+
112
+ # Build here to make `torch.jit.trace` work.
113
+ self._set_cos_sin_cache(
114
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
115
+ )
116
+
117
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
118
+ self.max_seq_len_cached = seq_len
119
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
120
+
121
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
122
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
123
+ emb = torch.cat((freqs, freqs), dim=-1)
124
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
125
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
126
+
127
+ def forward(self, x, seq_len=None):
128
+ # x: [bs, num_attention_heads, seq_len, head_size]
129
+ if seq_len > self.max_seq_len_cached:
130
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
131
+
132
+ return (
133
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
134
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
135
+ )
136
+
137
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Aquila
138
+ class AquilaLinearScalingRotaryEmbedding(AquilaRotaryEmbedding):
139
+ """AquilaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
140
+
141
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
142
+ self.scaling_factor = scaling_factor
143
+ super().__init__(dim, max_position_embeddings, base, device)
144
+
145
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
146
+ self.max_seq_len_cached = seq_len
147
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
148
+ t = t / self.scaling_factor
149
+
150
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
151
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
152
+ emb = torch.cat((freqs, freqs), dim=-1)
153
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
154
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
155
+
156
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Aquila
157
+ class AquilaDynamicNTKScalingRotaryEmbedding(AquilaRotaryEmbedding):
158
+ """AquilaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
159
+
160
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
161
+ self.scaling_factor = scaling_factor
162
+ super().__init__(dim, max_position_embeddings, base, device)
163
+
164
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
165
+ self.max_seq_len_cached = seq_len
166
+
167
+ if seq_len > self.max_position_embeddings:
168
+ base = self.base * (
169
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
170
+ ) ** (self.dim / (self.dim - 2))
171
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
172
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
173
+
174
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
175
+
176
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
177
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
178
+ emb = torch.cat((freqs, freqs), dim=-1)
179
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
180
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
181
+
182
+
183
+ def rotate_half(x):
184
+ """Rotates half the hidden dims of the input."""
185
+ x1 = x[..., : x.shape[-1] // 2]
186
+ x2 = x[..., x.shape[-1] // 2 :]
187
+ return torch.cat((-x2, x1), dim=-1)
188
+
189
+
190
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
191
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
192
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
193
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
194
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
195
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
196
+ q_embed = (q * cos) + (rotate_half(q) * sin)
197
+ k_embed = (k * cos) + (rotate_half(k) * sin)
198
+ return q_embed, k_embed
199
+
200
+
201
+ # Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Aquila
202
+ class AquilaMLP(nn.Module):
203
+ def __init__(self, config):
204
+ super().__init__()
205
+ self.config = config
206
+ self.hidden_size = config.hidden_size
207
+ self.intermediate_size = config.intermediate_size
208
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
209
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
210
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
211
+ self.act_fn = ACT2FN[config.hidden_act]
212
+
213
+ def forward(self, x):
214
+ if self.config.pretraining_tp > 1:
215
+ slice = self.intermediate_size // self.config.pretraining_tp
216
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
217
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
218
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
219
+
220
+ gate_proj = torch.cat(
221
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
222
+ )
223
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
224
+
225
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
226
+ down_proj = [
227
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
228
+ ]
229
+ down_proj = sum(down_proj)
230
+ else:
231
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
232
+
233
+ return down_proj
234
+
235
+
236
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
237
+ """
238
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
239
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
240
+ """
241
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
242
+ if n_rep == 1:
243
+ return hidden_states
244
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
245
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
246
+
247
+
248
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Aquila
249
+ class AquilaAttention(nn.Module):
250
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
251
+ def __init__(self, config: AquilaConfig):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.num_heads = config.num_attention_heads
256
+ self.head_dim = self.hidden_size // self.num_heads
257
+ self.num_key_value_heads = config.num_key_value_heads
258
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
259
+ self.max_position_embeddings = config.max_position_embeddings
260
+ self.rope_theta = config.rope_theta
261
+
262
+ if (self.head_dim * self.num_heads) != self.hidden_size:
263
+ raise ValueError(
264
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
265
+ f" and `num_heads`: {self.num_heads})."
266
+ )
267
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
268
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
269
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
270
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
271
+ self._init_rope()
272
+
273
+ def _init_rope(self):
274
+ if self.config.rope_scaling is None:
275
+ self.rotary_emb = AquilaRotaryEmbedding(
276
+ self.head_dim,
277
+ max_position_embeddings=self.max_position_embeddings,
278
+ base=self.rope_theta,
279
+ )
280
+ else:
281
+ scaling_type = self.config.rope_scaling["type"]
282
+ scaling_factor = self.config.rope_scaling["factor"]
283
+ if scaling_type == "linear":
284
+ self.rotary_emb = AquilaLinearScalingRotaryEmbedding(
285
+ self.head_dim,
286
+ max_position_embeddings=self.max_position_embeddings,
287
+ scaling_factor=scaling_factor,
288
+ base=self.rope_theta,
289
+ )
290
+ elif scaling_type == "dynamic":
291
+ self.rotary_emb = AquilaDynamicNTKScalingRotaryEmbedding(
292
+ self.head_dim,
293
+ max_position_embeddings=self.max_position_embeddings,
294
+ scaling_factor=scaling_factor,
295
+ base=self.rope_theta,
296
+ )
297
+ else:
298
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
299
+
300
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
301
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
302
+
303
+ def forward(
304
+ self,
305
+ hidden_states: torch.Tensor,
306
+ attention_mask: Optional[torch.Tensor] = None,
307
+ position_ids: Optional[torch.LongTensor] = None,
308
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
309
+ output_attentions: bool = False,
310
+ use_cache: bool = False,
311
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
312
+ bsz, q_len, _ = hidden_states.size()
313
+
314
+ if self.config.pretraining_tp > 1:
315
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
316
+ query_slices = self.q_proj.weight.split(
317
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
318
+ )
319
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
320
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
321
+
322
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
323
+ query_states = torch.cat(query_states, dim=-1)
324
+
325
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
326
+ key_states = torch.cat(key_states, dim=-1)
327
+
328
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
329
+ value_states = torch.cat(value_states, dim=-1)
330
+
331
+ else:
332
+ query_states = self.q_proj(hidden_states)
333
+ key_states = self.k_proj(hidden_states)
334
+ value_states = self.v_proj(hidden_states)
335
+
336
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
337
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
338
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
339
+
340
+ kv_seq_len = key_states.shape[-2]
341
+ if past_key_value is not None:
342
+ kv_seq_len += past_key_value[0].shape[-2]
343
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
344
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
345
+
346
+ if past_key_value is not None:
347
+ # reuse k, v, self_attention
348
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
349
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
350
+
351
+ past_key_value = (key_states, value_states) if use_cache else None
352
+
353
+ # repeat k/v heads if n_kv_heads < n_heads
354
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
355
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
356
+
357
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
358
+ attn_weights = torch.clamp(attn_weights, min=-1024., max=1024.)
359
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
360
+ raise ValueError(
361
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
362
+ f" {attn_weights.size()}"
363
+ )
364
+
365
+ if attention_mask is not None:
366
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
367
+ raise ValueError(
368
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
369
+ )
370
+ attn_weights = attn_weights + attention_mask
371
+
372
+ # upcast attention to fp32
373
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
374
+ attn_output = torch.matmul(attn_weights, value_states)
375
+
376
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
377
+ raise ValueError(
378
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
379
+ f" {attn_output.size()}"
380
+ )
381
+
382
+ attn_output = attn_output.transpose(1, 2).contiguous()
383
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
384
+
385
+ if self.config.pretraining_tp > 1:
386
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
387
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
388
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
389
+ else:
390
+ attn_output = self.o_proj(attn_output)
391
+
392
+ if not output_attentions:
393
+ attn_weights = None
394
+
395
+ return attn_output, attn_weights, past_key_value
396
+
397
+
398
+ # Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Aquila
399
+ class AquilaDecoderLayer(nn.Module):
400
+ def __init__(self, config: AquilaConfig):
401
+ super().__init__()
402
+ self.hidden_size = config.hidden_size
403
+ self.self_attn = AquilaAttention(config=config)
404
+ self.mlp = AquilaMLP(config)
405
+ self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
406
+ self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
407
+
408
+ def forward(
409
+ self,
410
+ hidden_states: torch.Tensor,
411
+ attention_mask: Optional[torch.Tensor] = None,
412
+ position_ids: Optional[torch.LongTensor] = None,
413
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
414
+ output_attentions: Optional[bool] = False,
415
+ use_cache: Optional[bool] = False,
416
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
417
+ """
418
+ Args:
419
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
420
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
421
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
422
+ output_attentions (`bool`, *optional*):
423
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
424
+ returned tensors for more detail.
425
+ use_cache (`bool`, *optional*):
426
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
427
+ (see `past_key_values`).
428
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
429
+ """
430
+
431
+ residual = hidden_states
432
+
433
+ hidden_states = self.input_layernorm(hidden_states)
434
+
435
+ # Self Attention
436
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
437
+ hidden_states=hidden_states,
438
+ attention_mask=attention_mask,
439
+ position_ids=position_ids,
440
+ past_key_value=past_key_value,
441
+ output_attentions=output_attentions,
442
+ use_cache=use_cache,
443
+ )
444
+ hidden_states = residual + hidden_states
445
+
446
+ # Fully Connected
447
+ residual = hidden_states
448
+ hidden_states = self.post_attention_layernorm(hidden_states)
449
+ hidden_states = self.mlp(hidden_states)
450
+ hidden_states = residual + hidden_states
451
+
452
+ outputs = (hidden_states,)
453
+
454
+ if output_attentions:
455
+ outputs += (self_attn_weights,)
456
+
457
+ if use_cache:
458
+ outputs += (present_key_value,)
459
+
460
+ return outputs
461
+
462
+ AQUILA_START_DOCSTRING = r"""
463
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
464
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
465
+ etc.)
466
+
467
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
468
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
469
+ and behavior.
470
+
471
+ Parameters:
472
+ config ([`AquilaConfig`]):
473
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
474
+ load the weights associated with the model, only the configuration. Check out the
475
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
476
+ """
477
+
478
+
479
+ @add_start_docstrings(
480
+ "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
481
+ AQUILA_START_DOCSTRING,
482
+ )
483
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->Aquila
484
+ class AquilaPreTrainedModel(PreTrainedModel):
485
+ config_class = AquilaConfig
486
+ base_model_prefix = "model"
487
+ supports_gradient_checkpointing = True
488
+ _no_split_modules = ["AquilaDecoderLayer"]
489
+ _skip_keys_device_placement = "past_key_values"
490
+
491
+ def _init_weights(self, module):
492
+ std = self.config.initializer_range
493
+ if isinstance(module, nn.Linear):
494
+ module.weight.data.normal_(mean=0.0, std=std)
495
+ if module.bias is not None:
496
+ module.bias.data.zero_()
497
+ elif isinstance(module, nn.Embedding):
498
+ module.weight.data.normal_(mean=0.0, std=std)
499
+ if module.padding_idx is not None:
500
+ module.weight.data[module.padding_idx].zero_()
501
+
502
+ def _set_gradient_checkpointing(self, module, value=False):
503
+ if isinstance(module, AquilaModel):
504
+ module.gradient_checkpointing = value
505
+
506
+
507
+ AQUILA_INPUTS_DOCSTRING = r"""
508
+ Args:
509
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
510
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
511
+ it.
512
+
513
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
514
+ [`PreTrainedTokenizer.__call__`] for details.
515
+
516
+ [What are input IDs?](../glossary#input-ids)
517
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
518
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
519
+
520
+ - 1 for tokens that are **not masked**,
521
+ - 0 for tokens that are **masked**.
522
+
523
+ [What are attention masks?](../glossary#attention-mask)
524
+
525
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
526
+ [`PreTrainedTokenizer.__call__`] for details.
527
+
528
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
529
+ `past_key_values`).
530
+
531
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
532
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
533
+ information on the default strategy.
534
+
535
+ - 1 indicates the head is **not masked**,
536
+ - 0 indicates the head is **masked**.
537
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
538
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
539
+ config.n_positions - 1]`.
540
+
541
+ [What are position IDs?](../glossary#position-ids)
542
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
543
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
544
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
545
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
546
+
547
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
548
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
549
+
550
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
551
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
552
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
553
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
554
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
555
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
556
+ model's internal embedding lookup matrix.
557
+ use_cache (`bool`, *optional*):
558
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
559
+ `past_key_values`).
560
+ output_attentions (`bool`, *optional*):
561
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
562
+ tensors for more detail.
563
+ output_hidden_states (`bool`, *optional*):
564
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
565
+ more detail.
566
+ return_dict (`bool`, *optional*):
567
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
568
+ """
569
+
570
+
571
+ @add_start_docstrings(
572
+ "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
573
+ AQUILA_START_DOCSTRING,
574
+ )
575
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel with LLAMA->AQUILA,Llama->Aquila
576
+ class AquilaModel(AquilaPreTrainedModel):
577
+ """
578
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AquilaDecoderLayer`]
579
+
580
+ Args:
581
+ config: AquilaConfig
582
+ """
583
+
584
+ def __init__(self, config: AquilaConfig):
585
+ super().__init__(config)
586
+ self.padding_idx = config.pad_token_id
587
+ self.vocab_size = config.vocab_size
588
+
589
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
590
+ self.layers = nn.ModuleList([AquilaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
591
+ self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
592
+
593
+ self.gradient_checkpointing = False
594
+ # Initialize weights and apply final processing
595
+ self.post_init()
596
+
597
+ def get_input_embeddings(self):
598
+ return self.embed_tokens
599
+
600
+ def set_input_embeddings(self, value):
601
+ self.embed_tokens = value
602
+
603
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
604
+ # create causal mask
605
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
606
+ combined_attention_mask = None
607
+ if input_shape[-1] > 1:
608
+ combined_attention_mask = _make_causal_mask(
609
+ input_shape,
610
+ inputs_embeds.dtype,
611
+ device=inputs_embeds.device,
612
+ past_key_values_length=past_key_values_length,
613
+ )
614
+
615
+ if attention_mask is not None:
616
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
617
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
618
+ inputs_embeds.device
619
+ )
620
+ combined_attention_mask = (
621
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
622
+ )
623
+
624
+ return combined_attention_mask
625
+
626
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
627
+ def forward(
628
+ self,
629
+ input_ids: torch.LongTensor = None,
630
+ attention_mask: Optional[torch.Tensor] = None,
631
+ position_ids: Optional[torch.LongTensor] = None,
632
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
633
+ inputs_embeds: Optional[torch.FloatTensor] = None,
634
+ use_cache: Optional[bool] = None,
635
+ output_attentions: Optional[bool] = None,
636
+ output_hidden_states: Optional[bool] = None,
637
+ return_dict: Optional[bool] = None,
638
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
639
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
640
+ output_hidden_states = (
641
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
642
+ )
643
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
644
+
645
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
646
+
647
+ # retrieve input_ids and inputs_embeds
648
+ if input_ids is not None and inputs_embeds is not None:
649
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
650
+ elif input_ids is not None:
651
+ batch_size, seq_length = input_ids.shape
652
+ elif inputs_embeds is not None:
653
+ batch_size, seq_length, _ = inputs_embeds.shape
654
+ else:
655
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
656
+
657
+ seq_length_with_past = seq_length
658
+ past_key_values_length = 0
659
+
660
+ if past_key_values is not None:
661
+ past_key_values_length = past_key_values[0][0].shape[2]
662
+ seq_length_with_past = seq_length_with_past + past_key_values_length
663
+
664
+ if position_ids is None:
665
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
666
+ position_ids = torch.arange(
667
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
668
+ )
669
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
670
+ else:
671
+ position_ids = position_ids.view(-1, seq_length).long()
672
+
673
+ if inputs_embeds is None:
674
+ inputs_embeds = self.embed_tokens(input_ids)
675
+ # embed positions
676
+ if attention_mask is None:
677
+ attention_mask = torch.ones(
678
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
679
+ )
680
+ attention_mask = self._prepare_decoder_attention_mask(
681
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
682
+ )
683
+
684
+ hidden_states = inputs_embeds
685
+
686
+ if self.gradient_checkpointing and self.training:
687
+ if use_cache:
688
+ logger.warning_once(
689
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
690
+ )
691
+ use_cache = False
692
+
693
+ # decoder layers
694
+ all_hidden_states = () if output_hidden_states else None
695
+ all_self_attns = () if output_attentions else None
696
+ next_decoder_cache = () if use_cache else None
697
+
698
+ for idx, decoder_layer in enumerate(self.layers):
699
+ if output_hidden_states:
700
+ all_hidden_states += (hidden_states,)
701
+
702
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
703
+
704
+ if self.gradient_checkpointing and self.training:
705
+
706
+ def create_custom_forward(module):
707
+ def custom_forward(*inputs):
708
+ # None for past_key_value
709
+ return module(*inputs, past_key_value, output_attentions)
710
+
711
+ return custom_forward
712
+
713
+ layer_outputs = torch.utils.checkpoint.checkpoint(
714
+ create_custom_forward(decoder_layer),
715
+ hidden_states,
716
+ attention_mask,
717
+ position_ids,
718
+ )
719
+ else:
720
+ layer_outputs = decoder_layer(
721
+ hidden_states,
722
+ attention_mask=attention_mask,
723
+ position_ids=position_ids,
724
+ past_key_value=past_key_value,
725
+ output_attentions=output_attentions,
726
+ use_cache=use_cache,
727
+ )
728
+
729
+ hidden_states = layer_outputs[0]
730
+
731
+ if use_cache:
732
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
733
+
734
+ if output_attentions:
735
+ all_self_attns += (layer_outputs[1],)
736
+
737
+ hidden_states = self.norm(hidden_states)
738
+
739
+ # add hidden states from the last decoder layer
740
+ if output_hidden_states:
741
+ all_hidden_states += (hidden_states,)
742
+
743
+ next_cache = next_decoder_cache if use_cache else None
744
+ if not return_dict:
745
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
746
+ return BaseModelOutputWithPast(
747
+ last_hidden_state=hidden_states,
748
+ past_key_values=next_cache,
749
+ hidden_states=all_hidden_states,
750
+ attentions=all_self_attns,
751
+ )
752
+
753
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->AQUILA,Llama->Aquila
754
+ class AquilaForCausalLM(AquilaPreTrainedModel):
755
+ _tied_weights_keys = ["lm_head.weight"]
756
+
757
+ def __init__(self, config):
758
+ super().__init__(config)
759
+ self.model = AquilaModel(config)
760
+ self.vocab_size = config.vocab_size
761
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
762
+
763
+ # Initialize weights and apply final processing
764
+ self.post_init()
765
+
766
+ def get_input_embeddings(self):
767
+ return self.model.embed_tokens
768
+
769
+ def set_input_embeddings(self, value):
770
+ self.model.embed_tokens = value
771
+
772
+ def get_output_embeddings(self):
773
+ return self.lm_head
774
+
775
+ def set_output_embeddings(self, new_embeddings):
776
+ self.lm_head = new_embeddings
777
+
778
+ def set_decoder(self, decoder):
779
+ self.model = decoder
780
+
781
+ def get_decoder(self):
782
+ return self.model
783
+
784
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
785
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
786
+ def forward(
787
+ self,
788
+ input_ids: torch.LongTensor = None,
789
+ attention_mask: Optional[torch.Tensor] = None,
790
+ position_ids: Optional[torch.LongTensor] = None,
791
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
792
+ inputs_embeds: Optional[torch.FloatTensor] = None,
793
+ labels: Optional[torch.LongTensor] = None,
794
+ use_cache: Optional[bool] = None,
795
+ output_attentions: Optional[bool] = None,
796
+ output_hidden_states: Optional[bool] = None,
797
+ return_dict: Optional[bool] = None,
798
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
799
+ r"""
800
+ Args:
801
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
802
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
803
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
804
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
805
+
806
+ Returns:
807
+
808
+ Example:
809
+
810
+ ```python
811
+ >>> from transformers import AutoTokenizer, AquilaForCausalLM
812
+
813
+ >>> model = AquilaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
814
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
815
+
816
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
817
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
818
+
819
+ >>> # Generate
820
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
821
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
822
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
823
+ ```"""
824
+
825
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
826
+ output_hidden_states = (
827
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
828
+ )
829
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
830
+
831
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
832
+ outputs = self.model(
833
+ input_ids=input_ids,
834
+ attention_mask=attention_mask,
835
+ position_ids=position_ids,
836
+ past_key_values=past_key_values,
837
+ inputs_embeds=inputs_embeds,
838
+ use_cache=use_cache,
839
+ output_attentions=output_attentions,
840
+ output_hidden_states=output_hidden_states,
841
+ return_dict=return_dict,
842
+ )
843
+
844
+ hidden_states = outputs[0]
845
+ if self.config.pretraining_tp > 1:
846
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
847
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
848
+ logits = torch.cat(logits, dim=-1)
849
+ else:
850
+ logits = self.lm_head(hidden_states)
851
+ logits = logits.float()
852
+
853
+ loss = None
854
+ if labels is not None:
855
+ # Shift so that tokens < n predict n
856
+ shift_logits = logits[..., :-1, :].contiguous()
857
+ shift_labels = labels[..., 1:].contiguous()
858
+ # Flatten the tokens
859
+ loss_fct = CrossEntropyLoss()
860
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
861
+ shift_labels = shift_labels.view(-1)
862
+ # Enable model parallelism
863
+ shift_labels = shift_labels.to(shift_logits.device)
864
+ loss = loss_fct(shift_logits, shift_labels)
865
+
866
+ if not return_dict:
867
+ output = (logits,) + outputs[1:]
868
+ return (loss,) + output if loss is not None else output
869
+
870
+ return CausalLMOutputWithPast(
871
+ loss=loss,
872
+ logits=logits,
873
+ past_key_values=outputs.past_key_values,
874
+ hidden_states=outputs.hidden_states,
875
+ attentions=outputs.attentions,
876
+ )
877
+
878
+ def prepare_inputs_for_generation(
879
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
880
+ ):
881
+ if past_key_values:
882
+ input_ids = input_ids[:, -1:]
883
+
884
+ position_ids = kwargs.get("position_ids", None)
885
+ if attention_mask is not None and position_ids is None:
886
+ # create position_ids on the fly for batch generation
887
+ position_ids = attention_mask.long().cumsum(-1) - 1
888
+ position_ids.masked_fill_(attention_mask == 0, 1)
889
+ if past_key_values:
890
+ position_ids = position_ids[:, -1].unsqueeze(-1)
891
+
892
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
893
+ if inputs_embeds is not None and past_key_values is None:
894
+ model_inputs = {"inputs_embeds": inputs_embeds}
895
+ else:
896
+ model_inputs = {"input_ids": input_ids}
897
+
898
+ model_inputs.update(
899
+ {
900
+ "position_ids": position_ids,
901
+ "past_key_values": past_key_values,
902
+ "use_cache": kwargs.get("use_cache"),
903
+ "attention_mask": attention_mask,
904
+ }
905
+ )
906
+ return model_inputs
907
+
908
+ @staticmethod
909
+ def _reorder_cache(past_key_values, beam_idx):
910
+ reordered_past = ()
911
+ for layer_past in past_key_values:
912
+ reordered_past += (
913
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
914
+ )
915
+ return reordered_past
916
+
917
+ def predict(self, text, tokenizer=None,
918
+ max_gen_len=200, top_p=0.95,
919
+ seed=1234, topk=100,
920
+ temperature=0.9,
921
+ sft=True, convo_template = "aquila-chat",
922
+ device = "cuda"):
923
+
924
+ vocab = tokenizer.get_vocab()
925
+ #device = device
926
+ id2word = {v:k for k, v in vocab.items()}
927
+
928
+
929
+ set_random_seed(seed)
930
+ if temperature == 0:
931
+ topk = 1
932
+ temperature = 1.0
933
+ if sft:
934
+ tokens = covert_prompt_to_input_ids_with_history(text, history=[], tokenizer=tokenizer, max_token=2048, convo_template=convo_template)
935
+ tokens = torch.tensor(tokens)[None,].to(device)
936
+ else :
937
+ tokens = tokenizer.encode_plus(text)["input_ids"]
938
+ print(tokenizer.decode(tokens))
939
+ tokens = torch.tensor(tokens)[None,].to(device)
940
+ input_length = len(tokens[0])
941
+ with torch.no_grad():
942
+
943
+ # instantiate logits processors
944
+ logits_processor = LogitsProcessorList(
945
+ [
946
+ MinLengthLogitsProcessor(1, eos_token_id=100007),
947
+ ]
948
+ )
949
+ # instantiate logits processors
950
+ logits_warper = LogitsProcessorList(
951
+ [
952
+ TopPLogitsWarper(top_p),
953
+ TopKLogitsWarper(topk),
954
+ TemperatureLogitsWarper(temperature),
955
+
956
+ ]
957
+ )
958
+
959
+ stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=input_length + max_gen_len)])
960
+ out = self.sample(
961
+ tokens,
962
+ logits_processor=logits_processor,
963
+ logits_warper=logits_warper,
964
+ stopping_criteria=stopping_criteria,
965
+ return_dict_in_generate=True,
966
+ output_scores=True,
967
+ )
968
+
969
+
970
+ # print(out)
971
+ out_ids = out["sequences"][0][input_length:].cpu().numpy()
972
+
973
+ out_scores = out["scores"]
974
+
975
+ out_scores = torch.cat(out_scores, dim=0)
976
+ out_scores = torch.nn.functional.softmax(out_scores, dim=-1).cpu().numpy()
977
+
978
+ probs = []
979
+ for i in range(len(out_ids)):
980
+ probs.append(float(out_scores[i][out_ids[i]]))
981
+
982
+ # print(f"probs is {probs}")
983
+
984
+ convert_tokens = []
985
+ for t in out_ids:
986
+ if t == 100006:
987
+ convert_tokens.append("[CLS]")
988
+ else :
989
+ convert_tokens.append(id2word.get(t, "[unkonwn_token]"))
990
+
991
+ out_text = tokenizer.decode(out_ids.tolist())
992
+
993
+
994
+ out = out_text
995
+
996
+ if "###" in out:
997
+ special_index = out.index("###")
998
+ out = out[: special_index]
999
+ token_length = len(tokenizer.encode_plus(out)["input_ids"])
1000
+ convert_tokens = convert_tokens[:token_length]
1001
+ probs = probs[:token_length]
1002
+
1003
+ if "[UNK]" in out:
1004
+ special_index = out.index("[UNK]")
1005
+ out = out[:special_index]
1006
+ token_length = len(tokenizer.encode_plus(out)["input_ids"])
1007
+ convert_tokens = convert_tokens[:token_length]
1008
+ probs = probs[:token_length]
1009
+
1010
+ if "</s>" in out:
1011
+ special_index = out.index("</s>")
1012
+ out = out[: special_index]
1013
+ token_length = len(tokenizer.encode_plus(out)["input_ids"])
1014
+ convert_tokens = convert_tokens[:token_length]
1015
+ probs = probs[:token_length]
1016
+
1017
+ if len(out) > 0 and out[0] == " ":
1018
+ out = out[1:]
1019
+
1020
+ convert_tokens = convert_tokens[1:]
1021
+ probs = probs[1:]
1022
+ return out
1023
+
1024
+ @add_start_docstrings(
1025
+ """
1026
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1027
+
1028
+ [`AquilaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1029
+ (e.g. GPT-2) do.
1030
+
1031
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1032
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1033
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1034
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1035
+ each row of the batch).
1036
+ """,
1037
+ AQUILA_START_DOCSTRING,
1038
+ )
1039
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->AQUILA,Llama->Aquila
1040
+ class AquilaForSequenceClassification(AquilaPreTrainedModel):
1041
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
1042
+
1043
+ def __init__(self, config):
1044
+ super().__init__(config)
1045
+ self.num_labels = config.num_labels
1046
+ self.model = AquilaModel(config)
1047
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1048
+
1049
+ # Initialize weights and apply final processing
1050
+ self.post_init()
1051
+
1052
+ def get_input_embeddings(self):
1053
+ return self.model.embed_tokens
1054
+
1055
+ def set_input_embeddings(self, value):
1056
+ self.model.embed_tokens = value
1057
+
1058
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
1059
+ def forward(
1060
+ self,
1061
+ input_ids: torch.LongTensor = None,
1062
+ attention_mask: Optional[torch.Tensor] = None,
1063
+ position_ids: Optional[torch.LongTensor] = None,
1064
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1065
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1066
+ labels: Optional[torch.LongTensor] = None,
1067
+ use_cache: Optional[bool] = None,
1068
+ output_attentions: Optional[bool] = None,
1069
+ output_hidden_states: Optional[bool] = None,
1070
+ return_dict: Optional[bool] = None,
1071
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1072
+ r"""
1073
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1074
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1075
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1076
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1077
+ """
1078
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1079
+
1080
+ transformer_outputs = self.model(
1081
+ input_ids,
1082
+ attention_mask=attention_mask,
1083
+ position_ids=position_ids,
1084
+ past_key_values=past_key_values,
1085
+ inputs_embeds=inputs_embeds,
1086
+ use_cache=use_cache,
1087
+ output_attentions=output_attentions,
1088
+ output_hidden_states=output_hidden_states,
1089
+ return_dict=return_dict,
1090
+ )
1091
+ hidden_states = transformer_outputs[0]
1092
+ logits = self.score(hidden_states)
1093
+
1094
+ if input_ids is not None:
1095
+ batch_size = input_ids.shape[0]
1096
+ else:
1097
+ batch_size = inputs_embeds.shape[0]
1098
+
1099
+ if self.config.pad_token_id is None and batch_size != 1:
1100
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1101
+ if self.config.pad_token_id is None:
1102
+ sequence_lengths = -1
1103
+ else:
1104
+ if input_ids is not None:
1105
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
1106
+ logits.device
1107
+ )
1108
+ else:
1109
+ sequence_lengths = -1
1110
+
1111
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1112
+
1113
+ loss = None
1114
+ if labels is not None:
1115
+ labels = labels.to(logits.device)
1116
+ if self.config.problem_type is None:
1117
+ if self.num_labels == 1:
1118
+ self.config.problem_type = "regression"
1119
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1120
+ self.config.problem_type = "single_label_classification"
1121
+ else:
1122
+ self.config.problem_type = "multi_label_classification"
1123
+
1124
+ if self.config.problem_type == "regression":
1125
+ loss_fct = MSELoss()
1126
+ if self.num_labels == 1:
1127
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1128
+ else:
1129
+ loss = loss_fct(pooled_logits, labels)
1130
+ elif self.config.problem_type == "single_label_classification":
1131
+ loss_fct = CrossEntropyLoss()
1132
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1133
+ elif self.config.problem_type == "multi_label_classification":
1134
+ loss_fct = BCEWithLogitsLoss()
1135
+ loss = loss_fct(pooled_logits, labels)
1136
+ if not return_dict:
1137
+ output = (pooled_logits,) + transformer_outputs[1:]
1138
+ return ((loss,) + output) if loss is not None else output
1139
+
1140
+ return SequenceClassifierOutputWithPast(
1141
+ loss=loss,
1142
+ logits=pooled_logits,
1143
+ past_key_values=transformer_outputs.past_key_values,
1144
+ hidden_states=transformer_outputs.hidden_states,
1145
+ attentions=transformer_outputs.attentions,
1146
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "100000": {
13
+ "content": "<|startofpiece|>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "100001": {
21
+ "content": "<|endofpiece|>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "100002": {
29
+ "content": "<|LDWANG|>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "100003": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "100004": {
45
+ "content": "[gMASK]",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "100005": {
53
+ "content": "[sMASK]",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "100006": {
61
+ "content": "[CLS]",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "100007": {
69
+ "content": "</s>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ }
76
+ },
77
+ "bos_token": "[CLS]",
78
+ "clean_up_tokenization_spaces": true,
79
+ "eos_token": "</s>",
80
+ "model_max_length": 2048,
81
+ "pad_token": "<|endoftext|>",
82
+ "padding_side": "right",
83
+ "tokenizer_class": "GPT2Tokenizer",
84
+ "unk_token": "<|endoftext|>"
85
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff