kawaimasa commited on
Commit
1b4e8ad
1 Parent(s): 3e7a018

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -3
README.md CHANGED
@@ -29,13 +29,14 @@ This repository is a test project comparing different loss weighting schemes for
29
 
30
  ## Test Cases
31
 
32
- This repository includes test models using four different weighting schemes:
33
 
34
  1. **test_normal_weight**
35
  - Baseline model using standard weighting
36
 
37
  2. **test_edm2_weighting**
38
  - New loss weighting scheme
 
39
 
40
  3. **test_min_snr_1(incomplete)**
41
  - Baseline model with `--min_snr_gamma = 1`
@@ -45,9 +46,14 @@ This repository includes test models using four different weighting schemes:
45
  - `--debiased_estimation_loss`
46
  - `--scale_v_pred_loss_like_noise_pred`
47
 
 
 
 
 
48
  ## Training Parameters
49
  For detailed parameters, please refer to the `.toml` files in each model directory.
50
- Each model directory uses sdxl_train.py (and sdxl_train.py and t.py for edm2).
 
51
 
52
  Common parameters:
53
  - Samples: 57,373
@@ -57,4 +63,38 @@ Common parameters:
57
  - Batch size: 8
58
  - Gradient accumulation steps: 4
59
  - Optimizer: Adafactor (stochastic rounding)
60
- - Training time: 13.5 GPU hours (RTX4090) per trial
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Test Cases
31
 
32
+ This repository includes test models using different weighting schemes:
33
 
34
  1. **test_normal_weight**
35
  - Baseline model using standard weighting
36
 
37
  2. **test_edm2_weighting**
38
  - New loss weighting scheme
39
+ - implementation by A
40
 
41
  3. **test_min_snr_1(incomplete)**
42
  - Baseline model with `--min_snr_gamma = 1`
 
46
  - `--debiased_estimation_loss`
47
  - `--scale_v_pred_loss_like_noise_pred`
48
 
49
+ 5. **test_edm2_weight_new(incomplete)**
50
+ - New loss weighting scheme
51
+ - Implementation by madman404
52
+
53
  ## Training Parameters
54
  For detailed parameters, please refer to the `.toml` files in each model directory.
55
+ Each model uses sdxl_train.py in each model directory
56
+ (and sdxl_train.py and t.py for test_edm2_weighting, sdxl_train.py andlossweightMLP.py for test_edm2_weight_new)
57
 
58
  Common parameters:
59
  - Samples: 57,373
 
63
  - Batch size: 8
64
  - Gradient accumulation steps: 4
65
  - Optimizer: Adafactor (stochastic rounding)
66
+ - Training time: 13.5 GPU hours (RTX4090) per trial
67
+
68
+ ## Dataset Information
69
+ The dataset used for testing consists of:
70
+ - ~53,000 images extracted from danbooru2023 based on specific artist styles (approximately 300 artists)
71
+ - ~4,000 carefully selected danbooru images for standardization
72
+
73
+ **Note**: As this dataset is a subset of my regular training data focused on specific artists, the model's generalization might be limited. A wildcard file (wildcard_style.txt) containing the list of included artists is provided for reference.
74
+
75
+ ### Tag Format
76
+ The training follows the tag format from [Kohaku-XL-Epsilon](https://huggingface.co/KBlueLeaf/Kohaku-XL-Epsilon):
77
+ `<1girl/1boy/1other/...>, <character>, <series>, <artists>, <general tags>, <quality tags>, <year tags>, <meta tags>, <rating tags>`
78
+
79
+ ### Style Prompts
80
+ The following style prompts from Kohaku-XL-Epsilon might be compatible (untested):
81
+ ```
82
+ ask \(askzy\), torino aqua, migolu, (jiu ye sang:1.1), (rumoon:0.9), (mizumi zumi:1.1)
83
+ ```
84
+ ```
85
+ ciloranko, maccha \(mochancc\), lobelia \(saclia\), migolu,
86
+ ask \(askzy\), wanke, (jiu ye sang:1.1), (rumoon:0.9), (mizumi zumi:1.1)
87
+ ```
88
+ ```
89
+ shiro9jira, ciloranko, ask \(askzy\), (tianliang duohe fangdongye:0.8)
90
+ ```
91
+ ```
92
+ (azuuru:1.1), (torino aqua:1.2), (azuuru:1.1), kedama milk,
93
+ fuzichoco, ask \(askzy\), chen bin, atdan, hito, mignon
94
+ ```
95
+ ```
96
+ ask \(askzy\), torino aqua, migolu
97
+ ```
98
+
99
+
100
+ *This model card was written with the assistance of Claude 3.5 Sonnet.*