kawaimasa commited on
Commit
321c606
1 Parent(s): 2eee50f

Upload sdxl_train.py

Browse files
Files changed (1) hide show
  1. test_debias_scale-like/sdxl_train.py +956 -0
test_debias_scale-like/sdxl_train.py ADDED
@@ -0,0 +1,956 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # training with captions
2
+
3
+ import argparse
4
+ import math
5
+ import os
6
+ from multiprocessing import Value
7
+ from typing import List
8
+ import toml
9
+
10
+ from tqdm import tqdm
11
+
12
+ import torch
13
+ from library.device_utils import init_ipex, clean_memory_on_device
14
+
15
+
16
+ init_ipex()
17
+
18
+ from accelerate.utils import set_seed
19
+ from diffusers import DDPMScheduler
20
+ from library import deepspeed_utils, sdxl_model_util
21
+
22
+ import library.train_util as train_util
23
+
24
+ from library.utils import setup_logging, add_logging_arguments
25
+
26
+ setup_logging()
27
+ import logging
28
+
29
+ logger = logging.getLogger(__name__)
30
+
31
+ import library.config_util as config_util
32
+ import library.sdxl_train_util as sdxl_train_util
33
+ from library.config_util import (
34
+ ConfigSanitizer,
35
+ BlueprintGenerator,
36
+ )
37
+ import library.custom_train_functions as custom_train_functions
38
+ from library.custom_train_functions import (
39
+ apply_snr_weight,
40
+ prepare_scheduler_for_custom_training,
41
+ scale_v_prediction_loss_like_noise_prediction,
42
+ add_v_prediction_like_loss,
43
+ apply_debiased_estimation,
44
+ apply_masked_loss,
45
+ )
46
+ from library.sdxl_original_unet import SdxlUNet2DConditionModel
47
+
48
+
49
+ UNET_NUM_BLOCKS_FOR_BLOCK_LR = 23
50
+
51
+
52
+ def get_block_params_to_optimize(unet: SdxlUNet2DConditionModel, block_lrs: List[float]) -> List[dict]:
53
+ block_params = [[] for _ in range(len(block_lrs))]
54
+
55
+ for i, (name, param) in enumerate(unet.named_parameters()):
56
+ if name.startswith("time_embed.") or name.startswith("label_emb."):
57
+ block_index = 0 # 0
58
+ elif name.startswith("input_blocks."): # 1-9
59
+ block_index = 1 + int(name.split(".")[1])
60
+ elif name.startswith("middle_block."): # 10-12
61
+ block_index = 10 + int(name.split(".")[1])
62
+ elif name.startswith("output_blocks."): # 13-21
63
+ block_index = 13 + int(name.split(".")[1])
64
+ elif name.startswith("out."): # 22
65
+ block_index = 22
66
+ else:
67
+ raise ValueError(f"unexpected parameter name: {name}")
68
+
69
+ block_params[block_index].append(param)
70
+
71
+ params_to_optimize = []
72
+ for i, params in enumerate(block_params):
73
+ if block_lrs[i] == 0: # 0のときは学習しない do not optimize when lr is 0
74
+ continue
75
+ params_to_optimize.append({"params": params, "lr": block_lrs[i]})
76
+
77
+ return params_to_optimize
78
+
79
+
80
+ def append_block_lr_to_logs(block_lrs, logs, lr_scheduler, optimizer_type):
81
+ names = []
82
+ block_index = 0
83
+ while block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR + 2:
84
+ if block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR:
85
+ if block_lrs[block_index] == 0:
86
+ block_index += 1
87
+ continue
88
+ names.append(f"block{block_index}")
89
+ elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR:
90
+ names.append("text_encoder1")
91
+ elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR + 1:
92
+ names.append("text_encoder2")
93
+
94
+ block_index += 1
95
+
96
+ train_util.append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names)
97
+
98
+
99
+ def train(args):
100
+ train_util.verify_training_args(args)
101
+ train_util.prepare_dataset_args(args, True)
102
+ sdxl_train_util.verify_sdxl_training_args(args)
103
+ deepspeed_utils.prepare_deepspeed_args(args)
104
+ setup_logging(args, reset=True)
105
+
106
+ assert (
107
+ not args.weighted_captions
108
+ ), "weighted_captions is not supported currently / weighted_captionsは現在サポートされていません"
109
+ assert (
110
+ not args.train_text_encoder or not args.cache_text_encoder_outputs
111
+ ), "cache_text_encoder_outputs is not supported when training text encoder / text encoderを学習するときはcache_text_encoder_outputsはサポートされていません"
112
+
113
+ if args.block_lr:
114
+ block_lrs = [float(lr) for lr in args.block_lr.split(",")]
115
+ assert (
116
+ len(block_lrs) == UNET_NUM_BLOCKS_FOR_BLOCK_LR
117
+ ), f"block_lr must have {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / block_lrは{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値を指定してください"
118
+ else:
119
+ block_lrs = None
120
+
121
+ cache_latents = args.cache_latents
122
+ use_dreambooth_method = args.in_json is None
123
+
124
+ if args.seed is not None:
125
+ set_seed(args.seed) # 乱数系列を初期化する
126
+
127
+ tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
128
+
129
+ # データセットを準備する
130
+ if args.dataset_class is None:
131
+ blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True))
132
+ if args.dataset_config is not None:
133
+ logger.info(f"Load dataset config from {args.dataset_config}")
134
+ user_config = config_util.load_user_config(args.dataset_config)
135
+ ignored = ["train_data_dir", "in_json"]
136
+ if any(getattr(args, attr) is not None for attr in ignored):
137
+ logger.warning(
138
+ "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無���されます: {0}".format(
139
+ ", ".join(ignored)
140
+ )
141
+ )
142
+ else:
143
+ if use_dreambooth_method:
144
+ logger.info("Using DreamBooth method.")
145
+ user_config = {
146
+ "datasets": [
147
+ {
148
+ "subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
149
+ args.train_data_dir, args.reg_data_dir
150
+ )
151
+ }
152
+ ]
153
+ }
154
+ else:
155
+ logger.info("Training with captions.")
156
+ user_config = {
157
+ "datasets": [
158
+ {
159
+ "subsets": [
160
+ {
161
+ "image_dir": args.train_data_dir,
162
+ "metadata_file": args.in_json,
163
+ }
164
+ ]
165
+ }
166
+ ]
167
+ }
168
+
169
+ blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2])
170
+ train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
171
+ else:
172
+ train_dataset_group = train_util.load_arbitrary_dataset(args, [tokenizer1, tokenizer2])
173
+
174
+ current_epoch = Value("i", 0)
175
+ current_step = Value("i", 0)
176
+ ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
177
+ collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
178
+
179
+ train_dataset_group.verify_bucket_reso_steps(32)
180
+
181
+ if args.debug_dataset:
182
+ train_util.debug_dataset(train_dataset_group, True)
183
+ return
184
+ if len(train_dataset_group) == 0:
185
+ logger.error(
186
+ "No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
187
+ )
188
+ return
189
+
190
+ if cache_latents:
191
+ assert (
192
+ train_dataset_group.is_latent_cacheable()
193
+ ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
194
+
195
+ if args.cache_text_encoder_outputs:
196
+ assert (
197
+ train_dataset_group.is_text_encoder_output_cacheable()
198
+ ), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
199
+
200
+ # acceleratorを準備する
201
+ logger.info("prepare accelerator")
202
+ accelerator = train_util.prepare_accelerator(args)
203
+
204
+ # mixed precisionに対応した型を用意しておき適宜castする
205
+ weight_dtype, save_dtype = train_util.prepare_dtype(args)
206
+ vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
207
+
208
+ # モデルを読み込む
209
+ (
210
+ load_stable_diffusion_format,
211
+ text_encoder1,
212
+ text_encoder2,
213
+ vae,
214
+ unet,
215
+ logit_scale,
216
+ ckpt_info,
217
+ ) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype)
218
+ # logit_scale = logit_scale.to(accelerator.device, dtype=weight_dtype)
219
+
220
+ # verify load/save model formats
221
+ if load_stable_diffusion_format:
222
+ src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
223
+ src_diffusers_model_path = None
224
+ else:
225
+ src_stable_diffusion_ckpt = None
226
+ src_diffusers_model_path = args.pretrained_model_name_or_path
227
+
228
+ if args.save_model_as is None:
229
+ save_stable_diffusion_format = load_stable_diffusion_format
230
+ use_safetensors = args.use_safetensors
231
+ else:
232
+ save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
233
+ use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
234
+ # assert save_stable_diffusion_format, "save_model_as must be ckpt or safetensors / save_model_asはckptかsafetensorsである必要があります"
235
+
236
+ # Diffusers版のxformers使用フラグを設定する関数
237
+ def set_diffusers_xformers_flag(model, valid):
238
+ def fn_recursive_set_mem_eff(module: torch.nn.Module):
239
+ if hasattr(module, "set_use_memory_efficient_attention_xformers"):
240
+ module.set_use_memory_efficient_attention_xformers(valid)
241
+
242
+ for child in module.children():
243
+ fn_recursive_set_mem_eff(child)
244
+
245
+ fn_recursive_set_mem_eff(model)
246
+
247
+ # モデルに xformers とか memory efficient attention を組み込む
248
+ if args.diffusers_xformers:
249
+ # もうU-Netを独自にしたので動かないけどVAEのxformersは動くはず
250
+ accelerator.print("Use xformers by Diffusers")
251
+ # set_diffusers_xformers_flag(unet, True)
252
+ set_diffusers_xformers_flag(vae, True)
253
+ else:
254
+ # Windows版のxformersはfloatで学習できなかったりするのでxformersを使わない設定も可能にしておく必要がある
255
+ accelerator.print("Disable Diffusers' xformers")
256
+ train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
257
+ if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
258
+ vae.set_use_memory_efficient_attention_xformers(args.xformers)
259
+
260
+ # 学習を準備する
261
+ if cache_latents:
262
+ vae.to(accelerator.device, dtype=vae_dtype)
263
+ vae.requires_grad_(False)
264
+ vae.eval()
265
+ with torch.no_grad():
266
+ train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
267
+ vae.to("cpu")
268
+ clean_memory_on_device(accelerator.device)
269
+
270
+ accelerator.wait_for_everyone()
271
+
272
+ # 学習を準備する:モデルを適切な状態にする
273
+ if args.gradient_checkpointing:
274
+ unet.enable_gradient_checkpointing()
275
+ train_unet = args.learning_rate != 0
276
+ train_text_encoder1 = False
277
+ train_text_encoder2 = False
278
+
279
+ if args.train_text_encoder:
280
+ # TODO each option for two text encoders?
281
+ accelerator.print("enable text encoder training")
282
+ if args.gradient_checkpointing:
283
+ text_encoder1.gradient_checkpointing_enable()
284
+ text_encoder2.gradient_checkpointing_enable()
285
+ lr_te1 = args.learning_rate_te1 if args.learning_rate_te1 is not None else args.learning_rate # 0 means not train
286
+ lr_te2 = args.learning_rate_te2 if args.learning_rate_te2 is not None else args.learning_rate # 0 means not train
287
+ train_text_encoder1 = lr_te1 != 0
288
+ train_text_encoder2 = lr_te2 != 0
289
+
290
+ # caching one text encoder output is not supported
291
+ if not train_text_encoder1:
292
+ text_encoder1.to(weight_dtype)
293
+ if not train_text_encoder2:
294
+ text_encoder2.to(weight_dtype)
295
+ text_encoder1.requires_grad_(train_text_encoder1)
296
+ text_encoder2.requires_grad_(train_text_encoder2)
297
+ text_encoder1.train(train_text_encoder1)
298
+ text_encoder2.train(train_text_encoder2)
299
+ else:
300
+ text_encoder1.to(weight_dtype)
301
+ text_encoder2.to(weight_dtype)
302
+ text_encoder1.requires_grad_(False)
303
+ text_encoder2.requires_grad_(False)
304
+ text_encoder1.eval()
305
+ text_encoder2.eval()
306
+
307
+ # TextEncoderの出力をキャッシュする
308
+ if args.cache_text_encoder_outputs:
309
+ # Text Encodes are eval and no grad
310
+ with torch.no_grad(), accelerator.autocast():
311
+ train_dataset_group.cache_text_encoder_outputs(
312
+ (tokenizer1, tokenizer2),
313
+ (text_encoder1, text_encoder2),
314
+ accelerator.device,
315
+ None,
316
+ args.cache_text_encoder_outputs_to_disk,
317
+ accelerator.is_main_process,
318
+ )
319
+ accelerator.wait_for_everyone()
320
+
321
+ if not cache_latents:
322
+ vae.requires_grad_(False)
323
+ vae.eval()
324
+ vae.to(accelerator.device, dtype=vae_dtype)
325
+
326
+ unet.requires_grad_(train_unet)
327
+ if not train_unet:
328
+ unet.to(accelerator.device, dtype=weight_dtype) # because of unet is not prepared
329
+
330
+ training_models = []
331
+ params_to_optimize = []
332
+ if train_unet:
333
+ training_models.append(unet)
334
+ if block_lrs is None:
335
+ params_to_optimize.append({"params": list(unet.parameters()), "lr": args.learning_rate})
336
+ else:
337
+ params_to_optimize.extend(get_block_params_to_optimize(unet, block_lrs))
338
+
339
+ if train_text_encoder1:
340
+ training_models.append(text_encoder1)
341
+ params_to_optimize.append({"params": list(text_encoder1.parameters()), "lr": args.learning_rate_te1 or args.learning_rate})
342
+ if train_text_encoder2:
343
+ training_models.append(text_encoder2)
344
+ params_to_optimize.append({"params": list(text_encoder2.parameters()), "lr": args.learning_rate_te2 or args.learning_rate})
345
+
346
+ # calculate number of trainable parameters
347
+ n_params = 0
348
+ for group in params_to_optimize:
349
+ for p in group["params"]:
350
+ n_params += p.numel()
351
+
352
+ accelerator.print(f"train unet: {train_unet}, text_encoder1: {train_text_encoder1}, text_encoder2: {train_text_encoder2}")
353
+ accelerator.print(f"number of models: {len(training_models)}")
354
+ accelerator.print(f"number of trainable parameters: {n_params}")
355
+
356
+ # 学習に必要なクラスを準備する
357
+ accelerator.print("prepare optimizer, data loader etc.")
358
+
359
+ if args.fused_optimizer_groups:
360
+ # fused backward pass: https://pytorch.org/tutorials/intermediate/optimizer_step_in_backward_tutorial.html
361
+ # Instead of creating an optimizer for all parameters as in the tutorial, we create an optimizer for each group of parameters.
362
+ # This balances memory usage and management complexity.
363
+
364
+ # calculate total number of parameters
365
+ n_total_params = sum(len(params["params"]) for params in params_to_optimize)
366
+ params_per_group = math.ceil(n_total_params / args.fused_optimizer_groups)
367
+
368
+ # split params into groups, keeping the learning rate the same for all params in a group
369
+ # this will increase the number of groups if the learning rate is different for different params (e.g. U-Net and text encoders)
370
+ grouped_params = []
371
+ param_group = []
372
+ param_group_lr = -1
373
+ for group in params_to_optimize:
374
+ lr = group["lr"]
375
+ for p in group["params"]:
376
+ # if the learning rate is different for different params, start a new group
377
+ if lr != param_group_lr:
378
+ if param_group:
379
+ grouped_params.append({"params": param_group, "lr": param_group_lr})
380
+ param_group = []
381
+ param_group_lr = lr
382
+
383
+ param_group.append(p)
384
+
385
+ # if the group has enough parameters, start a new group
386
+ if len(param_group) == params_per_group:
387
+ grouped_params.append({"params": param_group, "lr": param_group_lr})
388
+ param_group = []
389
+ param_group_lr = -1
390
+
391
+ if param_group:
392
+ grouped_params.append({"params": param_group, "lr": param_group_lr})
393
+
394
+ # prepare optimizers for each group
395
+ optimizers = []
396
+ for group in grouped_params:
397
+ _, _, optimizer = train_util.get_optimizer(args, trainable_params=[group])
398
+ optimizers.append(optimizer)
399
+ optimizer = optimizers[0] # avoid error in the following code
400
+
401
+ logger.info(f"using {len(optimizers)} optimizers for fused optimizer groups")
402
+
403
+ else:
404
+ _, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize)
405
+
406
+ # dataloaderを準備する
407
+ # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
408
+ n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
409
+ train_dataloader = torch.utils.data.DataLoader(
410
+ train_dataset_group,
411
+ batch_size=1,
412
+ shuffle=True,
413
+ collate_fn=collator,
414
+ num_workers=n_workers,
415
+ persistent_workers=args.persistent_data_loader_workers,
416
+ )
417
+
418
+ # 学習ステップ数を計算する
419
+ if args.max_train_epochs is not None:
420
+ args.max_train_steps = args.max_train_epochs * math.ceil(
421
+ len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
422
+ )
423
+ accelerator.print(
424
+ f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
425
+ )
426
+
427
+ # データセット側にも学習ステップを送信
428
+ train_dataset_group.set_max_train_steps(args.max_train_steps)
429
+
430
+ # lr schedulerを用意する
431
+ if args.fused_optimizer_groups:
432
+ # prepare lr schedulers for each optimizer
433
+ lr_schedulers = [train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) for optimizer in optimizers]
434
+ lr_scheduler = lr_schedulers[0] # avoid error in the following code
435
+ else:
436
+ lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
437
+
438
+ # 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする
439
+ if args.full_fp16:
440
+ assert (
441
+ args.mixed_precision == "fp16"
442
+ ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
443
+ accelerator.print("enable full fp16 training.")
444
+ unet.to(weight_dtype)
445
+ text_encoder1.to(weight_dtype)
446
+ text_encoder2.to(weight_dtype)
447
+ elif args.full_bf16:
448
+ assert (
449
+ args.mixed_precision == "bf16"
450
+ ), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
451
+ accelerator.print("enable full bf16 training.")
452
+ unet.to(weight_dtype)
453
+ text_encoder1.to(weight_dtype)
454
+ text_encoder2.to(weight_dtype)
455
+
456
+ # freeze last layer and final_layer_norm in te1 since we use the output of the penultimate layer
457
+ if train_text_encoder1:
458
+ text_encoder1.text_model.encoder.layers[-1].requires_grad_(False)
459
+ text_encoder1.text_model.final_layer_norm.requires_grad_(False)
460
+
461
+ if args.deepspeed:
462
+ ds_model = deepspeed_utils.prepare_deepspeed_model(
463
+ args,
464
+ unet=unet if train_unet else None,
465
+ text_encoder1=text_encoder1 if train_text_encoder1 else None,
466
+ text_encoder2=text_encoder2 if train_text_encoder2 else None,
467
+ )
468
+ # most of ZeRO stage uses optimizer partitioning, so we have to prepare optimizer and ds_model at the same time. # pull/1139#issuecomment-1986790007
469
+ ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
470
+ ds_model, optimizer, train_dataloader, lr_scheduler
471
+ )
472
+ training_models = [ds_model]
473
+
474
+ else:
475
+ # acceleratorがなんかよろしくやってくれるらしい
476
+ if train_unet:
477
+ unet = accelerator.prepare(unet)
478
+ if train_text_encoder1:
479
+ text_encoder1 = accelerator.prepare(text_encoder1)
480
+ if train_text_encoder2:
481
+ text_encoder2 = accelerator.prepare(text_encoder2)
482
+ optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
483
+
484
+ # TextEncoderの出力をキャッシュするときにはCPUへ移動する
485
+ if args.cache_text_encoder_outputs:
486
+ # move Text Encoders for sampling images. Text Encoder doesn't work on CPU with fp16
487
+ text_encoder1.to("cpu", dtype=torch.float32)
488
+ text_encoder2.to("cpu", dtype=torch.float32)
489
+ clean_memory_on_device(accelerator.device)
490
+ else:
491
+ # make sure Text Encoders are on GPU
492
+ text_encoder1.to(accelerator.device)
493
+ text_encoder2.to(accelerator.device)
494
+
495
+ # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
496
+ if args.full_fp16:
497
+ # During deepseed training, accelerate not handles fp16/bf16|mixed precision directly via scaler. Let deepspeed engine do.
498
+ # -> But we think it's ok to patch accelerator even if deepspeed is enabled.
499
+ train_util.patch_accelerator_for_fp16_training(accelerator)
500
+
501
+ # resumeする
502
+ train_util.resume_from_local_or_hf_if_specified(accelerator, args)
503
+
504
+ if args.fused_backward_pass:
505
+ # use fused optimizer for backward pass: other optimizers will be supported in the future
506
+ import library.adafactor_fused
507
+
508
+ library.adafactor_fused.patch_adafactor_fused(optimizer)
509
+ for param_group in optimizer.param_groups:
510
+ for parameter in param_group["params"]:
511
+ if parameter.requires_grad:
512
+
513
+ def __grad_hook(tensor: torch.Tensor, param_group=param_group):
514
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
515
+ accelerator.clip_grad_norm_(tensor, args.max_grad_norm)
516
+ optimizer.step_param(tensor, param_group)
517
+ tensor.grad = None
518
+
519
+ parameter.register_post_accumulate_grad_hook(__grad_hook)
520
+
521
+ elif args.fused_optimizer_groups:
522
+ # prepare for additional optimizers and lr schedulers
523
+ for i in range(1, len(optimizers)):
524
+ optimizers[i] = accelerator.prepare(optimizers[i])
525
+ lr_schedulers[i] = accelerator.prepare(lr_schedulers[i])
526
+
527
+ # counters are used to determine when to step the optimizer
528
+ global optimizer_hooked_count
529
+ global num_parameters_per_group
530
+ global parameter_optimizer_map
531
+
532
+ optimizer_hooked_count = {}
533
+ num_parameters_per_group = [0] * len(optimizers)
534
+ parameter_optimizer_map = {}
535
+
536
+ for opt_idx, optimizer in enumerate(optimizers):
537
+ for param_group in optimizer.param_groups:
538
+ for parameter in param_group["params"]:
539
+ if parameter.requires_grad:
540
+
541
+ def optimizer_hook(parameter: torch.Tensor):
542
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
543
+ accelerator.clip_grad_norm_(parameter, args.max_grad_norm)
544
+
545
+ i = parameter_optimizer_map[parameter]
546
+ optimizer_hooked_count[i] += 1
547
+ if optimizer_hooked_count[i] == num_parameters_per_group[i]:
548
+ optimizers[i].step()
549
+ optimizers[i].zero_grad(set_to_none=True)
550
+
551
+ parameter.register_post_accumulate_grad_hook(optimizer_hook)
552
+ parameter_optimizer_map[parameter] = opt_idx
553
+ num_parameters_per_group[opt_idx] += 1
554
+
555
+ # epoch数を計算する
556
+ num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
557
+ num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
558
+ if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
559
+ args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
560
+
561
+ # 学習する
562
+ # total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
563
+ accelerator.print("running training / 学習開始")
564
+ accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
565
+ accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
566
+ accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
567
+ accelerator.print(
568
+ f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
569
+ )
570
+ # accelerator.print(
571
+ # f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
572
+ # )
573
+ accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
574
+ accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
575
+
576
+ progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
577
+ global_step = 0
578
+
579
+ noise_scheduler = DDPMScheduler(
580
+ beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
581
+ )
582
+ # prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
583
+
584
+ if args.zero_terminal_snr:
585
+ custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
586
+
587
+ prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
588
+
589
+
590
+ if accelerator.is_main_process:
591
+ init_kwargs = {}
592
+ if args.wandb_run_name:
593
+ init_kwargs["wandb"] = {"name": args.wandb_run_name}
594
+ if args.log_tracker_config is not None:
595
+ init_kwargs = toml.load(args.log_tracker_config)
596
+ accelerator.init_trackers(
597
+ "finetuning" if args.log_tracker_name is None else args.log_tracker_name,
598
+ config=train_util.get_sanitized_config_or_none(args),
599
+ init_kwargs=init_kwargs,
600
+ )
601
+
602
+ # For --sample_at_first
603
+ sdxl_train_util.sample_images(
604
+ accelerator, args, 0, global_step, accelerator.device, vae, [tokenizer1, tokenizer2], [text_encoder1, text_encoder2], unet
605
+ )
606
+
607
+ loss_recorder = train_util.LossRecorder()
608
+ for epoch in range(num_train_epochs):
609
+ accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
610
+ current_epoch.value = epoch + 1
611
+
612
+ for m in training_models:
613
+ m.train()
614
+
615
+ for step, batch in enumerate(train_dataloader):
616
+ current_step.value = global_step
617
+
618
+ if args.fused_optimizer_groups:
619
+ optimizer_hooked_count = {i: 0 for i in range(len(optimizers))} # reset counter for each step
620
+
621
+ with accelerator.accumulate(*training_models):
622
+ if "latents" in batch and batch["latents"] is not None:
623
+ latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
624
+ else:
625
+ with torch.no_grad():
626
+ # latentに変換
627
+ latents = vae.encode(batch["images"].to(vae_dtype)).latent_dist.sample().to(weight_dtype)
628
+
629
+ # NaNが含まれていれば警告を表示し0に置き換える
630
+ if torch.any(torch.isnan(latents)):
631
+ accelerator.print("NaN found in latents, replacing with zeros")
632
+ latents = torch.nan_to_num(latents, 0, out=latents)
633
+ latents = latents * sdxl_model_util.VAE_SCALE_FACTOR
634
+
635
+ if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
636
+ input_ids1 = batch["input_ids"]
637
+ input_ids2 = batch["input_ids2"]
638
+ with torch.set_grad_enabled(args.train_text_encoder):
639
+ # Get the text embedding for conditioning
640
+ # TODO support weighted captions
641
+ # if args.weighted_captions:
642
+ # encoder_hidden_states = get_weighted_text_embeddings(
643
+ # tokenizer,
644
+ # text_encoder,
645
+ # batch["captions"],
646
+ # accelerator.device,
647
+ # args.max_token_length // 75 if args.max_token_length else 1,
648
+ # clip_skip=args.clip_skip,
649
+ # )
650
+ # else:
651
+ input_ids1 = input_ids1.to(accelerator.device)
652
+ input_ids2 = input_ids2.to(accelerator.device)
653
+ # unwrap_model is fine for models not wrapped by accelerator
654
+ encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
655
+ args.max_token_length,
656
+ input_ids1,
657
+ input_ids2,
658
+ tokenizer1,
659
+ tokenizer2,
660
+ text_encoder1,
661
+ text_encoder2,
662
+ None if not args.full_fp16 else weight_dtype,
663
+ accelerator=accelerator,
664
+ )
665
+ else:
666
+ encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
667
+ encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
668
+ pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)
669
+
670
+ # # verify that the text encoder outputs are correct
671
+ # ehs1, ehs2, p2 = train_util.get_hidden_states_sdxl(
672
+ # args.max_token_length,
673
+ # batch["input_ids"].to(text_encoder1.device),
674
+ # batch["input_ids2"].to(text_encoder1.device),
675
+ # tokenizer1,
676
+ # tokenizer2,
677
+ # text_encoder1,
678
+ # text_encoder2,
679
+ # None if not args.full_fp16 else weight_dtype,
680
+ # )
681
+ # b_size = encoder_hidden_states1.shape[0]
682
+ # assert ((encoder_hidden_states1.to("cpu") - ehs1.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
683
+ # assert ((encoder_hidden_states2.to("cpu") - ehs2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
684
+ # assert ((pool2.to("cpu") - p2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
685
+ # logger.info("text encoder outputs verified")
686
+
687
+ # get size embeddings
688
+ orig_size = batch["original_sizes_hw"]
689
+ crop_size = batch["crop_top_lefts"]
690
+ target_size = batch["target_sizes_hw"]
691
+ embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
692
+
693
+ # concat embeddings
694
+ vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
695
+ text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
696
+
697
+ # Sample noise, sample a random timestep for each image, and add noise to the latents,
698
+ # with noise offset and/or multires noise if specified
699
+ noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(
700
+ args, noise_scheduler, latents
701
+ )
702
+
703
+ noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
704
+
705
+ # Predict the noise residual
706
+ with accelerator.autocast():
707
+ noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
708
+
709
+ if args.v_parameterization:
710
+ # v-parameterization training
711
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
712
+ else:
713
+ target = noise
714
+
715
+ if (
716
+ args.min_snr_gamma
717
+ or args.scale_v_pred_loss_like_noise_pred
718
+ or args.v_pred_like_loss
719
+ or args.debiased_estimation_loss
720
+ or args.masked_loss
721
+ ):
722
+ # do not mean over batch dimension for snr weight or scale v-pred loss
723
+ loss = train_util.conditional_loss(
724
+ noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c
725
+ )
726
+ if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None):
727
+ loss = apply_masked_loss(loss, batch)
728
+ loss = loss.mean([1, 2, 3])
729
+
730
+ if args.min_snr_gamma:
731
+ loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
732
+ if args.scale_v_pred_loss_like_noise_pred:
733
+ loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
734
+ if args.v_pred_like_loss:
735
+ loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
736
+ if args.debiased_estimation_loss:
737
+ loss = apply_debiased_estimation(loss, timesteps, noise_scheduler, args.v_parameterization)
738
+
739
+ loss = loss.mean() # mean over batch dimension
740
+ else:
741
+ loss = train_util.conditional_loss(
742
+ noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c
743
+ )
744
+
745
+ accelerator.backward(loss)
746
+
747
+ if not (args.fused_backward_pass or args.fused_optimizer_groups):
748
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
749
+ params_to_clip = []
750
+ for m in training_models:
751
+ params_to_clip.extend(m.parameters())
752
+ accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
753
+
754
+ optimizer.step()
755
+ lr_scheduler.step()
756
+ optimizer.zero_grad(set_to_none=True)
757
+ else:
758
+ # optimizer.step() and optimizer.zero_grad() are called in the optimizer hook
759
+ lr_scheduler.step()
760
+ if args.fused_optimizer_groups:
761
+ for i in range(1, len(optimizers)):
762
+ lr_schedulers[i].step()
763
+
764
+ # Checks if the accelerator has performed an optimization step behind the scenes
765
+ if accelerator.sync_gradients:
766
+ progress_bar.update(1)
767
+ global_step += 1
768
+
769
+ sdxl_train_util.sample_images(
770
+ accelerator,
771
+ args,
772
+ None,
773
+ global_step,
774
+ accelerator.device,
775
+ vae,
776
+ [tokenizer1, tokenizer2],
777
+ [text_encoder1, text_encoder2],
778
+ unet,
779
+ )
780
+
781
+ # 指定ステップごとにモデルを保存
782
+ if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
783
+ accelerator.wait_for_everyone()
784
+ if accelerator.is_main_process:
785
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
786
+ sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise(
787
+ args,
788
+ False,
789
+ accelerator,
790
+ src_path,
791
+ save_stable_diffusion_format,
792
+ use_safetensors,
793
+ save_dtype,
794
+ epoch,
795
+ num_train_epochs,
796
+ global_step,
797
+ accelerator.unwrap_model(text_encoder1),
798
+ accelerator.unwrap_model(text_encoder2),
799
+ accelerator.unwrap_model(unet),
800
+ vae,
801
+ logit_scale,
802
+ ckpt_info,
803
+ )
804
+
805
+ current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
806
+ if args.logging_dir is not None:
807
+ logs = {"loss": current_loss}
808
+ if block_lrs is None:
809
+ train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=train_unet)
810
+ else:
811
+ append_block_lr_to_logs(block_lrs, logs, lr_scheduler, args.optimizer_type) # U-Net is included in block_lrs
812
+
813
+ accelerator.log(logs, step=global_step)
814
+
815
+ loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
816
+ avr_loss: float = loss_recorder.moving_average
817
+ logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
818
+ progress_bar.set_postfix(**logs)
819
+
820
+ if global_step >= args.max_train_steps:
821
+ break
822
+
823
+ if args.logging_dir is not None:
824
+ logs = {"loss/epoch": loss_recorder.moving_average}
825
+ accelerator.log(logs, step=epoch + 1)
826
+
827
+ accelerator.wait_for_everyone()
828
+
829
+ if args.save_every_n_epochs is not None:
830
+ if accelerator.is_main_process:
831
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
832
+ sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise(
833
+ args,
834
+ True,
835
+ accelerator,
836
+ src_path,
837
+ save_stable_diffusion_format,
838
+ use_safetensors,
839
+ save_dtype,
840
+ epoch,
841
+ num_train_epochs,
842
+ global_step,
843
+ accelerator.unwrap_model(text_encoder1),
844
+ accelerator.unwrap_model(text_encoder2),
845
+ accelerator.unwrap_model(unet),
846
+ vae,
847
+ logit_scale,
848
+ ckpt_info,
849
+ )
850
+
851
+ sdxl_train_util.sample_images(
852
+ accelerator,
853
+ args,
854
+ epoch + 1,
855
+ global_step,
856
+ accelerator.device,
857
+ vae,
858
+ [tokenizer1, tokenizer2],
859
+ [text_encoder1, text_encoder2],
860
+ unet,
861
+ )
862
+
863
+ is_main_process = accelerator.is_main_process
864
+ # if is_main_process:
865
+ unet = accelerator.unwrap_model(unet)
866
+ text_encoder1 = accelerator.unwrap_model(text_encoder1)
867
+ text_encoder2 = accelerator.unwrap_model(text_encoder2)
868
+
869
+ accelerator.end_training()
870
+
871
+ if args.save_state or args.save_state_on_train_end:
872
+ train_util.save_state_on_train_end(args, accelerator)
873
+
874
+ del accelerator # この後メモリを使うのでこれは消す
875
+
876
+ if is_main_process:
877
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
878
+ sdxl_train_util.save_sd_model_on_train_end(
879
+ args,
880
+ src_path,
881
+ save_stable_diffusion_format,
882
+ use_safetensors,
883
+ save_dtype,
884
+ epoch,
885
+ global_step,
886
+ text_encoder1,
887
+ text_encoder2,
888
+ unet,
889
+ vae,
890
+ logit_scale,
891
+ ckpt_info,
892
+ )
893
+ logger.info("model saved.")
894
+
895
+
896
+ def setup_parser() -> argparse.ArgumentParser:
897
+ parser = argparse.ArgumentParser()
898
+
899
+ add_logging_arguments(parser)
900
+ train_util.add_sd_models_arguments(parser)
901
+ train_util.add_dataset_arguments(parser, True, True, True)
902
+ train_util.add_training_arguments(parser, False)
903
+ train_util.add_masked_loss_arguments(parser)
904
+ deepspeed_utils.add_deepspeed_arguments(parser)
905
+ train_util.add_sd_saving_arguments(parser)
906
+ train_util.add_optimizer_arguments(parser)
907
+ config_util.add_config_arguments(parser)
908
+ custom_train_functions.add_custom_train_arguments(parser)
909
+ sdxl_train_util.add_sdxl_training_arguments(parser)
910
+
911
+ parser.add_argument(
912
+ "--learning_rate_te1",
913
+ type=float,
914
+ default=None,
915
+ help="learning rate for text encoder 1 (ViT-L) / text encoder 1 (ViT-L)の学習率",
916
+ )
917
+ parser.add_argument(
918
+ "--learning_rate_te2",
919
+ type=float,
920
+ default=None,
921
+ help="learning rate for text encoder 2 (BiG-G) / text encoder 2 (BiG-G)の学習率",
922
+ )
923
+
924
+ parser.add_argument(
925
+ "--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する"
926
+ )
927
+ parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
928
+ parser.add_argument(
929
+ "--no_half_vae",
930
+ action="store_true",
931
+ help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
932
+ )
933
+ parser.add_argument(
934
+ "--block_lr",
935
+ type=str,
936
+ default=None,
937
+ help=f"learning rates for each block of U-Net, comma-separated, {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / "
938
+ + f"U-Netの各ブロックの学習率、カンマ区切り、{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値",
939
+ )
940
+ parser.add_argument(
941
+ "--fused_optimizer_groups",
942
+ type=int,
943
+ default=None,
944
+ help="number of optimizers for fused backward pass and optimizer step / fused backward passとoptimizer stepのためのoptimizer数",
945
+ )
946
+ return parser
947
+
948
+
949
+ if __name__ == "__main__":
950
+ parser = setup_parser()
951
+
952
+ args = parser.parse_args()
953
+ train_util.verify_command_line_training_args(args)
954
+ args = train_util.read_config_from_file(args, parser)
955
+
956
+ train(args)