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Abstract

This report describes one of the award-winning submis-
sions to the 2024 S23DR challenge hosted by the Urban
Scene Modeling workshop team. Targeting precise extrac-
tion of 3D wire frames from 2D images captured in urban
scenes, our method explores both 2D and 3D processing
techniques, and is ranked 3rd in both public as well as pri-
vate test sets.

1. Introduction
This report is organized as follows: Section 1 first describes
the nature of the problems and the technical decisions be-
hind the proposed approach. Section 2 then presents find-
ings during experiments and all corresponding modifica-
tions toward the final method.

1.1. Problem definition

HoHo dataset [1] is a recently released dataset, consisting
of 4316 samples for training, 175 for validation, and 1072
as test sets in this urban scene competition. Each sample
of the dataset is an urban house with information captured
from at least 3 views. Each view has the following prepro-
cessed data: gestalt segmentation, ade20K segmentation,
depth map, and camera parameters. A reconstructed 3D
point cloud is also provided for each scene. The compe-
tition is on designing an algorithm that can detect a set of
predefined 3D keypoints (X, Y, Z) and edges (pairs of key-
points) for all test scenes within 2 hours of compute time.
The evaluation metric is Wire Frame Edit Distance (WED),
adopted from PC2WF [2].

1.2. Candidate methods

Considering the limited development time for the compe-
tition, a natural choice is building solutions on top of the
multiview geometry pipeline: (i) detecting lines and key-
points on 2D gestalt images, subsequently also the connec-
tions between keypoints; (ii) using the corresponding depth
information to project 2D keypoints to the 3D space; and
(iii) aggregating 3D keypoints. This soon leads to a promis-
ing prototype highly ranked on the leaderboard, which will

be described in detail in the next section.

One obvious alternative is formulating the problem as a
3D keypoint detection task, directly detecting 3D keypoints
and connections from the input 3D pointcloud like a recent
work PC2WF [2] does. The main advantage of such end-
to-end approaches is that error propagation in the multiview
geometry pipeline could be avoided. So the question comes
to whether the quantity and quality of the 3D data can sup-
port.

At the first glance, the scale of the HoHo training set
looks similar to what is used in PC2WF. In addition, the
competition is focused on one single category of objects –
urban house – that simplifies the complexity of modeling.
However, the quality gap between HoHo’s SfM pointclouds
and CAD data used in PC2WF is a concern. This concern
is later amplified after more HoHo pointclouds are inves-
tigated: HoHo pointclouds are not only relatively noisier,
sparser, but also contain distracting environmental struc-
tures. The organizer provided 3D mesh information for the
training set could large mitigate these problems, but build-
ing a reliable meshing algorithm for processing the unseen
test data is not a trivial task, arguably making the total com-
plexity and robustness back to a similar level to the multi-
view counterpart.

HoW-3D [3] presents another direction of extracting 3D
wireframes. It first infers both visible and occluded key-
points from a single 2D image, build 2.5D wire frames,
and then finally lifts them to 3D. The most appealing prop-
erty of this direction is: keypoint detection and point-wise
depth estimation could be jointly modeled and potentially
help each other in a learning based neural network architec-
ture. On the flip side, two main concerns are (a) Quality of
input images: the ADE segmentation and gestalt segmen-
tation are output of some other algorithms. Despite decent
semantic quality, they may not carry sufficient information
needed in the described task as raw images do. For exam-
ple: absence of lighting/shading information can hurt the
inference of depth and/or inference of the occluded key-
points. One may consider concatenating the depth map as
a layer of input to the neural network to solve this prob-
lem; a caveat is that the provided depth maps sometimes
contain irrelevant objects such as vehicles and trees that are



not captured in the corresponding gestalt images, which can
increase the difficulty of machine learning. (b) Complex
structure of urban houses: man-made objects often encode
symmetry, which has been a strong prior in computer vision
and may be implicitly learned in neural nets as a cue. This
is probably why How-3D authors had to select ”meaning-
ful viewpoints” to render the CAD models for neural net-
work training. In contrast to their manually curated training
set, we do not have such a privilege in this competition. In
fact, it is also unlikely that for every house only a single
meaningful viewpoint is required to infer its full structure.
Decorated structures such as balconies can either exist or
not at the occluded sides of the house, whereas CAD mod-
els demonstrated in HoW-3D appear to have simpler and
more predictable shapes. For this reason, more advanced
model architectures that consider cues from multiple views
are needed.

2. Implementation
With the initial analysis, we have chosen the multiview ge-
ometry pipeline to tackle the urban scene wire frame ex-
traction problem. The following subsections describe im-
plementation details of each step.

2.1. Gestalt segmentation

Most of our development attempts are around the gestalt
segmentation because of its rich semantic information. A
gestalt segmentation is generated by a domain specific
model which encodes key semantics including edges and
vertices into a set of predefined colors. With proper color
filtering, pixel clustering, and line fitting on a gestalt image,
these 2D keypoints and connection information can be ex-
tracted for a view. These can be easily done by OpenCV
built-in functions. One needs to be careful on the selection
of color thresholds. The default 0.5 is too conservative that
can result in broken line segments which are hard to process
later. We chose 10 as the default threshold, that allows more
aggressive feature extraction and largely improves the accu-
racy. This yet can lead to some drawback: false detection
on irrelevant pixels that accidentally carry similar colors to
the target semantic (e.g., due to JPEG compression artifact).
One prominent case is false detection of flashing end point,
coded in purple, can happen around the border of concrete
and unclassified, which are coded in blue and red respec-
tively. These two categories unfortunately occupy big por-
tions of pixels in the dataset, thus also their confusing muta-
tion. To mitigate this problem, we narrow the color masking
range to 5 for flashing end point. Morphological cleaning
could be considered to remove this kind of false detection.
Not that our final submission did not include all categories
on the gestalt image such as soffit, mainly due to the devel-
opment time constraint.

Another image processing technique we performed is

connected component analysis to retain only the largest
non-background structure in a gestalt image. This is in-
spired by the observation that some urban houses are very
close to neighbors, so their gestalt images capture seman-
tics located on nearby irrelevant house structures. There
are a few cases where the target house cannot form a single
connected component, but fortunately, the broken parts are
never located around the critical keypoints and edges. No-
ticeable improvement on WED is observed after applying
this gestalt image clean up.

Extraction of edge connection can be built upon gestalt
color thresholding results. A reference method is finding
the left most pixel and right most pixel in a cluster of edge
pixels and checking if they are close enough to two key-
points. This method fails when two edges intersect and thus
all pixels belonging to two edges get mixed in one single
cluster. We developed another algorithm to avoid this prob-
lem: exhaustive hypothesis evaluation on all pairs of key-
points. First we perform Bitwise OR to combine all feature
masks corresponding to all keypoint/edge of interest. This
resulting binary mask serves as a connectivity mask that we
will use to evaluate each connection hypothesis. The idea
is that a line segment can be built to connect two keypoints
if enough number of sample pixels in between the two key-
points agree. We chose 80% as the threshold to accom-
modate occlusions that can break edges on the connectivity
mask: e.g., a ridge connection can be broken due to occlu-
sion by a chimney. We found this new method successfully
improved accuracy of 2D connection, but interestingly the
ultimate WED can suffer. This observation leads us to the
investigation on the quality of depth estimation.

2.2. Pointcloud back projection to replace monocu-
lar depth estimation

The first investigation is on the provided scale estimation
coefficient 2.5. In the very first few scenes of the first batch
of training set, it can be observed that 2.5 does not always
look the best. However, with insufficient knowledge to this
parameter and visualization on more training data, we still
decided to continue using this coefficient.

Given the hint that the provided Colmap pointcloud has
high quality than the monocular depth algorithm, we at-
tempted to project 3D pointcloud to each 2D camera view
and see if the resulting depth map leads to better final key-
point/wireframe detection. Our experiments help determine
the following best practice: (1) this depth information can
appear very sparse on the high resolution image plane, so
some expansion is needed when searching for a keypoint’s
depth. (2) it is best to increase the search range progres-
sively. We defined 6 scales to search, from small to large.
(3) There can be multiple candidate depth values in the
range of search. We chose the min() operation to deter-
mine the depth value. (4) What is the role of the default



depth map from monocular depth estimation? We turned
out only use it to assign depth values when the largest search
region cannot even find any depth information on the point-
cloud derived depth map.

2.3. Prioritizing vertices over connections

Even with much improved depth information to lift 2D de-
tection to 3D, it is found still challenging to get vertices and
edges correctly associated with the ground truth. As long
as a false 3D vertex is somehow placed close to a ground
truth vertex, there is a chance that the real vertex detection
got hijacked during the association step and consequently
its perfect edge connections. This missed assignment can
even propagate: the real vertex now may hijack another ver-
tex during association. This observation suggests that the
development effort should be on vertices rather than edges
because even perfect edge prediction can cause high WED
penalties if vertex prediction is not robust. We decided to
only submit vertex prediction, since the organizer modified
the evaluation rule and empty edges are acceptable. Built
upon this, we attempted to identify a type of edges that
can only improve WED. Unfortunately empty edge still per-
forms the best throughout the competition.

2.4. Filtering in 3D

Knowing there is still room to improve on 3D estimation,
we performed below techniques to filter 3D pointclouds as
well as vertices.

2.4.1 Vertex filtering

There was one idea of pruning non-connected vertices. This
step turns out unnecessary since the rule no longer enforce
connected vertices. We also found that this step often in-
troduces higher WED, which is not favorable. We at a time
used dataset distribution to set some condition to trigger this
step. However, our final submissions show that higher score
is achieved if completing removing this step.

Pruning vertices far away from others in 3D can be use-
ful when some outliers appear due to noises from any steps
of the pipeline. We implemented a pruning strategy to re-
move an isolated vertex if there is no nearby vertex to sup-
port it. While this minimal method has nothing to do if two
erroneous vertices stay together, we still see improvement
of scores on test and training sets.

Pruning unrealistically tall or short vertices has been
used in the experiment. While statistically it brings in im-
provement on both training and public test sets, it is dis-
abled in the final submission as we found not all provided
3D pointcloud are normalized. Advanced ground level esti-
mation algorithm could be developed in the future to enable
this filter again.

One motivation behind these pruning strategies is again
the distracting 3D structures in the surroundings. Even
though the 2D distraction on gestalt has been removed,
these 3D distraction can contribute significant noise during
lifting 2D estimations to 3D. Thus, in addition to pruning
vertices, we also attempt to clean up 3D pointcloud before
using it.

2.4.2 Pointcloud filtering

The main idea is using DBSCAN clustering to remove ir-
relevant 3D points. Unfortunately all submitted variants ran
out of server compute time before yielding results. It is
perhaps because highly parallelized program together with
python package version discrepancy that use up system re-
source on the server but not in my local development. The
final submission applies OPTICS instead of DBSCAN to
complete the evaluation. Some lessons we learned at this
step include: (1) in addition to the main structure, including
the noise cluster predicted by DBSCAN and OPTICS is not
preferred. The trade off here is cleaner surroundings vs.
more information on some sparsely-reconstructed part of
the house e.g., roof; and it turns out that in the HoHo dataset
removing surrounding noise leads to higher gain over pre-
serving sparse points. This suggests that more advanced
point cloud cleaning method could further improve the re-
sult in the future. (2) How to define the main structure? It
turns out that the number of member point is the right prior
to apply. Most of the scenes have the house pointcloud sit
close to (0,0,0), but it is not always the case.

2.5. ADE segmentation

ADE segmentation potentially carries complementary in-
formation to the above pipeline. For example, the well
aligned ADE and Monocular Depth maps could help ex-
tract 3D information that is even better than Colmap. We
leave this as future work.

2.6. Ablation

As time did not permit, we did not conduct a formal abla-
tion study. For future reference, below is a rough timeline
highlighting a few milestones.
• First submission, WED = 2.5, ranked 2nd; This is the

baseline model with a wide color thresholding range on
gestalt, disabled prune not connected vertex, and taking
mean() operation to determine a stable depth value from
a local region.

• WED = 2.3, ranked 3rd; introduced pointcloud de-
rived depth; introduced two search ranges on depth maps;
replaced mean() with min(). Conditioned 3D ver-
tex pruning mechanisms and more aggressive 3D vertex
merging.



• WED = 2.0, ranked 1st; Despite densely predicted con-
nections, only submitted at most 2 connections per scene.

• Last day, WED = 1.99, ranked 1st-3rd; gestalt image
clean up. Completely no connections.

• Final submission, WED = 1.96, ranked 3rd: Pointcloud
clean up.

2.7. Learning vertex and connection

As discussed earlier, directly predicting 3D vertex and con-
nection does not seem to be a viable path in this competi-
tion. However, there could be a chance to improve some
of the steps in our pipeline with machine learning meth-
ods. One attempt we have made is training a HAWP [4] on
the HoHo dataset. HAWP is designed to construct 2D wire
frames for 2D images. We see the potential that HAWP
could yield robust 2D wire frame and visible keypoints es-
timation, and later be extended to 3D estimation.

To generate training data for HAWP, we back projected
ground truth vertices to 2D gestalt image planes and only
retained those visible keypoints from the camera perspec-
tive. Rather than completely switching the gear, this step
actually helps visualize the distribution of the training set,
which was useful during we validated behaviors & tuned
parameters for the main pipeline. Thanks to the light ar-
chitecture of HAWP, 30 epochs of training or finetuning on
a batch of HoHo set can complete within an hour in a Co-
lab T4 environment and show promising progress. The ver-
tex predictions became focused on the HoHo keypoints as
apposed to the author’s pretrained model yielding junction
predictions at all (window, door, floor...) corners. Connec-
tion prediction is less ideal; considerable numbers of false
alarms can be observed.

This line of exploration did not continue as we soon re-
alized (with improving WED in mind) that the development
priority should not be on 2D estimation, and it is risky to
proceed to 3D estimation with yet imperfect 2D under an
all-in-one neural network architecture. We encourage fu-
ture work to investigate this intriguing topic on large real
world datasets such as HoHo.
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