File size: 9,004 Bytes
8a6cb91 b7581b5 8a6cb91 b7581b5 8a6cb91 b7581b5 8a6cb91 b7581b5 8a6cb91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import torch
import torch.nn as nn
import clip
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from torchvision import transforms
class MLP(nn.Module):
def __init__(self, input_size):
super().__init__()
self.input_size = input_size
self.layers = nn.Sequential(
nn.Linear(self.input_size, 512),
nn.Dropout(0.2),
nn.Linear(512, 256),
)
self.last_layer = nn.Linear(256, 1, bias=False)
self.last_layer_weight = self.last_layer.weight
# initial MLP param
for name, param in self.layers.named_parameters():
if 'weight' in name:
nn.init.normal_(param, mean=0.0, std=1.0/(self.input_size+1))
if 'bias' in name:
nn.init.constant_(param, val=0)
for name, param in self.last_layer.named_parameters():
if 'weight' in name:
nn.init.normal_(param, mean=0.0, std=1.0/(self.input_size+1))
if 'bias' in name:
nn.init.constant_(param, val=0)
def forward(self, input):
features = self.layers(input)
out = self.last_layer(features)
return out, features
class ViTBlock(nn.Module):
def __init__(self, feature_dim, num_heads, mlp_dim, dropout=0.1):
super(ViTBlock, self).__init__()
# Transformer encoder layer
self.encoder_layer = TransformerEncoderLayer(
d_model=feature_dim,
nhead=num_heads,
dim_feedforward=mlp_dim,
dropout=dropout,
batch_first=True # Input shape: (batch_size, seq_length, feature_dim)
)
self.transformer_encoder = TransformerEncoder(self.encoder_layer, num_layers=1)
def forward(self, x):
x = self.transformer_encoder(x)
return x
class InpaintReward(nn.Module):
def __init__(self, config, device='cpu'):
super().__init__()
self.config = config
self.device = device
self.clip_model, self.preprocess = clip.load("ViT-B/32")
self.clip_model = self.clip_model.float()
self.mlp = MLP(self.config['Reward']['mlp_dim'])
self.vit_block = ViTBlock(self.config["ViT"]["feature_dim"], self.config["ViT"]["num_heads"], self.config["ViT"]["mlp_dim"])
self.toImage = transforms.ToPILImage()
self.mean = 0.4064 #0.65823
self.std = 2.3021 #8.5400
if self.config.fix_base:
self.clip_model.requires_grad_(False)
def score(self, inpaint_list, masks_rgb):
inpaint_embeds_bs, mask_rgb_embeds_bs = [], []
for bs in range(len(inpaint_list)):
if isinstance(inpaint_list[bs], torch.Tensor):
inpaint = self.toImage(inpaint_list[bs])
else:
inpaint = inpaint_list[bs]
inpaint = self.preprocess(inpaint).unsqueeze(0)
if isinstance(masks_rgb[bs], torch.Tensor):
mask_rgb = self.toImage(masks_rgb[bs])
else:
mask_rgb = masks_rgb[bs]
mask_rgb = self.preprocess(masks_rgb[bs]).unsqueeze(0)
inpt, msk = inpaint.to(self.device), mask_rgb.to(self.device)
inpt_embeds = self.clip_model.encode_image(inpt).to(torch.float32)
msk_embeds = self.clip_model.encode_image(msk).to(torch.float32)
inpaint_embeds_bs.append(inpt_embeds.squeeze(0))
mask_rgb_embeds_bs.append(msk_embeds.squeeze(0))
emb_inpaint = torch.stack(inpaint_embeds_bs, dim=0)
emb_mask_rgb = torch.stack(mask_rgb_embeds_bs, dim=0)
emb_feature = torch.cat((emb_inpaint, emb_mask_rgb), dim=-1)
emb_feature = emb_feature.unsqueeze(1)
emb_feature = self.vit_block(emb_feature) # 1024
scores, last_features = self.mlp(emb_feature)
scores = torch.squeeze(scores)
last_features = torch.squeeze(last_features)
if self.config.group:
scores = (scores - self.mean) / self.std
return scores.detach().cpu().numpy().tolist(), last_features.detach().cpu().numpy().tolist()
def load_model(self, model, ckpt_path = None):
print('load checkpoint from %s'%ckpt_path)
state_dict = {k: v for k, v in torch.load(ckpt_path, map_location='cpu').items()}
new_dict = {key.replace("module.", ""): value for key, value in state_dict.items()}
model.load_state_dict(new_dict)
return model
class InpaintRewardGroup(nn.Module):
def __init__(self, config, device='cpu'):
super().__init__()
self.config = config
self.device = device
self.clip_model, self.preprocess = clip.load("ViT-B/32", device="cuda") #clip.load(config['clip_model'], device="cuda" if torch.cuda.is_available() else "cpu")
self.clip_model = self.clip_model.float()
self.mlp = MLP(config['Reward']['mlp_dim'])
self.vit_block = ViTBlock(self.config["ViT"]["feature_dim"], self.config["ViT"]["num_heads"], self.config["ViT"]["mlp_dim"])
if self.config.fix_base:
self.clip_model.requires_grad_(False)
for name, parms in self.clip_model.named_parameters():
if '_proj' in name:
parms.requires_grad_(False)
# fix certain ratio of layers
self.image_layer_num = 12
if self.config.fix_base > 0:
image_fix_num = "resblocks.{}".format(int(self.image_layer_num * self.config.fix_base))
for name, parms in self.clip_model.visual.named_parameters():
parms.requires_grad_(False)
if image_fix_num in name:
break
def loose_layer(self, fix_rate):
text_layer_id = [f"layer.{id}" for id in range(int(12 * fix_rate), 13)]
image_layer_id = [f"blocks.{id}" for id in range(int(24 * fix_rate), 25)]
for name, parms in self.blip.text_encoder.named_parameters():
for text_id in text_layer_id:
if text_id in name:
parms.requires_grad_(True)
for name, parms in self.blip.visual_encoder.named_parameters():
for image_id in image_layer_id:
if image_id in name:
parms.requires_grad_(True)
def forward(self, batch_data):
b_emb_inpt, b_emb_msk, w_emb_inpt, w_emb_msk = self.encode_pair(batch_data) # Nan
# forward
b_emb_feature = torch.cat((b_emb_inpt, b_emb_msk), dim=-1)
b_emb_feature = self.vit_block(b_emb_feature) # 1024
w_emb_feature = torch.cat((w_emb_inpt, w_emb_msk), dim=-1)
w_emb_feature = self.vit_block(w_emb_feature) # 1024
reward_better = self.mlp(b_emb_feature).squeeze(-1)
reward_worse = self.mlp(w_emb_feature).squeeze(-1)
reward = torch.concat((reward_better, reward_worse), dim=1)
return reward
def encode_pair(self, batch_data):
better_inpaint_embeds_bs, better_mask_rgb_embeds_bs = [], []
worse_inpaint_embeds_bs, worse_mask_rgb_embeds_bs = [], []
for bs in range(len(batch_data)):
better_inpt, better_msk = batch_data[bs]['better_inpt'], batch_data[bs]['better_msk']
better_inpt, better_msk = better_inpt.to(self.device), better_msk.to(self.device)
worse_inpt, worse_msk = batch_data[bs]['worse_inpt'], batch_data[bs]['worse_msk']
worse_inpt, worse_msk = worse_inpt.to(self.device), worse_msk.to(self.device)
# with torch.no_grad():
better_inpaint_embeds = self.clip_model.encode_image(better_inpt).to(torch.float32)
better_mask_rgb_embeds = self.clip_model.encode_image(better_msk).to(torch.float32)
worse_inpaint_embeds = self.clip_model.encode_image(worse_inpt).to(torch.float32)
worse_mask_rgb_embeds = self.clip_model.encode_image(worse_msk).to(torch.float32)
better_inpaint_embeds_bs.append(better_inpaint_embeds)
better_mask_rgb_embeds_bs.append(better_mask_rgb_embeds)
worse_inpaint_embeds_bs.append(worse_inpaint_embeds)
worse_mask_rgb_embeds_bs.append(worse_mask_rgb_embeds)
b_inpt = torch.stack(better_inpaint_embeds_bs, dim=0)
b_msk = torch.stack(better_mask_rgb_embeds_bs, dim=0)
w_inpt = torch.stack(worse_inpaint_embeds_bs, dim=0)
w_msk = torch.stack(worse_mask_rgb_embeds_bs, dim=0)
return b_inpt, b_msk, w_inpt, w_msk
def load_model(self, model, ckpt_path = None):
print('load checkpoint from %s'%ckpt_path)
checkpoint = torch.load(ckpt_path, map_location='cpu')
state_dict = checkpoint
msg = model.load_state_dict(state_dict,strict=False)
print("missing keys:", msg.missing_keys)
return model
|