File size: 9,004 Bytes
8a6cb91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7581b5
8a6cb91
 
 
 
 
 
 
b7581b5
8a6cb91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7581b5
8a6cb91
 
 
 
 
 
 
 
b7581b5
8a6cb91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
import torch.nn as nn
import clip
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from torchvision import transforms 


class MLP(nn.Module):
    def __init__(self, input_size):
        super().__init__()
        self.input_size = input_size
        
        self.layers = nn.Sequential(
            nn.Linear(self.input_size, 512),
            nn.Dropout(0.2),
            nn.Linear(512, 256), 
        )
        self.last_layer = nn.Linear(256, 1, bias=False)
        self.last_layer_weight = self.last_layer.weight
        # initial MLP param
        for name, param in self.layers.named_parameters():
            if 'weight' in name:
                nn.init.normal_(param, mean=0.0, std=1.0/(self.input_size+1))
            if 'bias' in name:
                nn.init.constant_(param, val=0)
        
        for name, param in self.last_layer.named_parameters():
            if 'weight' in name:
                nn.init.normal_(param, mean=0.0, std=1.0/(self.input_size+1))
            if 'bias' in name:
                nn.init.constant_(param, val=0)
        
    def forward(self, input):
        features = self.layers(input)
        out = self.last_layer(features)
        return out, features


class ViTBlock(nn.Module):
    def __init__(self, feature_dim, num_heads, mlp_dim, dropout=0.1):
        super(ViTBlock, self).__init__()
        # Transformer encoder layer
        self.encoder_layer = TransformerEncoderLayer(
            d_model=feature_dim,
            nhead=num_heads,
            dim_feedforward=mlp_dim,
            dropout=dropout,
            batch_first=True  # Input shape: (batch_size, seq_length, feature_dim)
        )
        self.transformer_encoder = TransformerEncoder(self.encoder_layer, num_layers=1)

    def forward(self, x):
        x = self.transformer_encoder(x)
        return x


class InpaintReward(nn.Module):
    def __init__(self, config, device='cpu'):
        super().__init__()
        self.config = config
        self.device = device
        
        self.clip_model, self.preprocess = clip.load("ViT-B/32") 
        self.clip_model = self.clip_model.float()
        self.mlp = MLP(self.config['Reward']['mlp_dim'])
        self.vit_block = ViTBlock(self.config["ViT"]["feature_dim"], self.config["ViT"]["num_heads"], self.config["ViT"]["mlp_dim"])
        
        self.toImage = transforms.ToPILImage()

        self.mean = 0.4064   #0.65823
        self.std =  2.3021       #8.5400

        if self.config.fix_base:
            self.clip_model.requires_grad_(False)
    
    def score(self, inpaint_list, masks_rgb):
        
        inpaint_embeds_bs, mask_rgb_embeds_bs = [], []
 
        for bs in range(len(inpaint_list)):
            if isinstance(inpaint_list[bs], torch.Tensor):
                inpaint = self.toImage(inpaint_list[bs])
            else:
                inpaint = inpaint_list[bs]
            inpaint = self.preprocess(inpaint).unsqueeze(0)
            if isinstance(masks_rgb[bs], torch.Tensor):
                mask_rgb = self.toImage(masks_rgb[bs])
            else:
                mask_rgb = masks_rgb[bs]
            mask_rgb = self.preprocess(masks_rgb[bs]).unsqueeze(0)
            inpt, msk = inpaint.to(self.device), mask_rgb.to(self.device)
           
            inpt_embeds = self.clip_model.encode_image(inpt).to(torch.float32)
            msk_embeds = self.clip_model.encode_image(msk).to(torch.float32)

            inpaint_embeds_bs.append(inpt_embeds.squeeze(0))
            mask_rgb_embeds_bs.append(msk_embeds.squeeze(0))

        
        emb_inpaint = torch.stack(inpaint_embeds_bs, dim=0)
        emb_mask_rgb = torch.stack(mask_rgb_embeds_bs, dim=0)

        emb_feature = torch.cat((emb_inpaint, emb_mask_rgb), dim=-1)
        emb_feature = emb_feature.unsqueeze(1)
        emb_feature = self.vit_block(emb_feature) # 1024
      
        scores, last_features = self.mlp(emb_feature)
        scores = torch.squeeze(scores)
        last_features = torch.squeeze(last_features)

        if self.config.group:
            scores = (scores - self.mean) / self.std
    

        return scores.detach().cpu().numpy().tolist(), last_features.detach().cpu().numpy().tolist()
        

    
    def load_model(self, model, ckpt_path = None):
        
        print('load checkpoint from %s'%ckpt_path)
        state_dict = {k: v for k, v in torch.load(ckpt_path, map_location='cpu').items()}
        new_dict = {key.replace("module.", ""): value for key, value in state_dict.items()}
        model.load_state_dict(new_dict)
        
        return model 

       

class InpaintRewardGroup(nn.Module):
    def __init__(self, config, device='cpu'):
        super().__init__()
        self.config = config
        self.device = device
        
        self.clip_model, self.preprocess = clip.load("ViT-B/32", device="cuda") #clip.load(config['clip_model'], device="cuda" if torch.cuda.is_available() else "cpu")
        
        self.clip_model = self.clip_model.float()
        self.mlp = MLP(config['Reward']['mlp_dim'])
        self.vit_block = ViTBlock(self.config["ViT"]["feature_dim"], self.config["ViT"]["num_heads"], self.config["ViT"]["mlp_dim"])
        
        if self.config.fix_base:
            self.clip_model.requires_grad_(False)
        
        for name, parms in self.clip_model.named_parameters():
            if '_proj' in name:
                parms.requires_grad_(False)
        
        # fix certain ratio of layers
        self.image_layer_num = 12
        if self.config.fix_base > 0:
            image_fix_num = "resblocks.{}".format(int(self.image_layer_num * self.config.fix_base))
            for name, parms in self.clip_model.visual.named_parameters():
                parms.requires_grad_(False)
                if image_fix_num in name:
                    break


    def loose_layer(self, fix_rate):
        text_layer_id = [f"layer.{id}" for id in range(int(12 * fix_rate), 13)]
        image_layer_id = [f"blocks.{id}" for id in range(int(24 * fix_rate), 25)]
        for name, parms in self.blip.text_encoder.named_parameters():
            for text_id in text_layer_id:
                if text_id in name:
                    parms.requires_grad_(True)
        for name, parms in self.blip.visual_encoder.named_parameters():
            for image_id in image_layer_id:
                if image_id in name:
                    parms.requires_grad_(True)


    def forward(self, batch_data):
        
        b_emb_inpt, b_emb_msk, w_emb_inpt, w_emb_msk = self.encode_pair(batch_data) # Nan
        # forward
        b_emb_feature = torch.cat((b_emb_inpt, b_emb_msk), dim=-1)
        b_emb_feature = self.vit_block(b_emb_feature) # 1024
        w_emb_feature = torch.cat((w_emb_inpt, w_emb_msk), dim=-1)
        w_emb_feature = self.vit_block(w_emb_feature) # 1024

        reward_better = self.mlp(b_emb_feature).squeeze(-1)
        reward_worse = self.mlp(w_emb_feature).squeeze(-1)
        reward = torch.concat((reward_better, reward_worse), dim=1)
        
        return reward


    def encode_pair(self, batch_data):
        better_inpaint_embeds_bs, better_mask_rgb_embeds_bs = [], []
        worse_inpaint_embeds_bs, worse_mask_rgb_embeds_bs = [], []
        for bs in range(len(batch_data)):
            better_inpt, better_msk = batch_data[bs]['better_inpt'], batch_data[bs]['better_msk']
            better_inpt, better_msk = better_inpt.to(self.device), better_msk.to(self.device)

            worse_inpt, worse_msk = batch_data[bs]['worse_inpt'], batch_data[bs]['worse_msk']
            worse_inpt, worse_msk = worse_inpt.to(self.device), worse_msk.to(self.device)
            # with torch.no_grad():
            better_inpaint_embeds = self.clip_model.encode_image(better_inpt).to(torch.float32)
            better_mask_rgb_embeds = self.clip_model.encode_image(better_msk).to(torch.float32)
            worse_inpaint_embeds = self.clip_model.encode_image(worse_inpt).to(torch.float32)
            worse_mask_rgb_embeds = self.clip_model.encode_image(worse_msk).to(torch.float32)

            better_inpaint_embeds_bs.append(better_inpaint_embeds)
            better_mask_rgb_embeds_bs.append(better_mask_rgb_embeds)
            worse_inpaint_embeds_bs.append(worse_inpaint_embeds)
            worse_mask_rgb_embeds_bs.append(worse_mask_rgb_embeds)

            b_inpt = torch.stack(better_inpaint_embeds_bs, dim=0)
            b_msk = torch.stack(better_mask_rgb_embeds_bs, dim=0)
            w_inpt = torch.stack(worse_inpaint_embeds_bs, dim=0)
            w_msk = torch.stack(worse_mask_rgb_embeds_bs, dim=0)
        
    
        return b_inpt, b_msk, w_inpt, w_msk
    

    def load_model(self, model, ckpt_path = None):
        
        print('load checkpoint from %s'%ckpt_path)
        checkpoint = torch.load(ckpt_path, map_location='cpu') 
        state_dict = checkpoint
        msg = model.load_state_dict(state_dict,strict=False)
        print("missing keys:", msg.missing_keys)

        return model