kdave commited on
Commit
3c290cc
1 Parent(s): 957e2c5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -11,7 +11,7 @@ tags:
11
  - bert
12
  - Inference Endpoints
13
  ---
14
- # Model Card for Model ID
15
 
16
  <!-- Provide a quick summary of what the model is/does. -->
17
 
@@ -28,7 +28,7 @@ Our fine-tuned FinBERT model is a powerful tool designed for sentiment analysis
28
  - **Language:** English
29
  - **Finetuned from model:** yiyanghkust/finbert-tone
30
 
31
- ### Model Sources [optional]
32
 
33
  <!-- Provide the basic links for the model. -->
34
 
@@ -47,7 +47,7 @@ from transformers import BertTokenizer, BertForSequenceClassification
47
  from transformers import pipeline
48
 
49
  # Load the fine-tuned FinBERT model and tokenizer
50
- finbert = BertForSequenceClassification.from_pretrained('kdave/FineTuned_Finbert, num_labels=3)
51
  tokenizer = BertTokenizer.from_pretrained('kdave/FineTuned_Finbert')
52
 
53
  # Create a sentiment-analysis pipeline
@@ -148,11 +148,12 @@ tokenizer = BertTokenizer.from_pretrained('kdave/FineTuned_Finbert')
148
 
149
  # Create a sentiment-analysis pipeline
150
  nlp_pipeline = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer)
 
 
151
  Step 3: Perform Sentiment Analysis
152
  Now, you're ready to analyze sentiment! Provide the model with sentences related to Indian stock market news:
153
 
154
- python
155
- Copy code
156
  # Example sentences related to Indian stock market news
157
  sentences = [
158
  "The Indian stock market experienced a surge in trading activity.",
 
11
  - bert
12
  - Inference Endpoints
13
  ---
14
+ # Model Card for FineTuned finbert model
15
 
16
  <!-- Provide a quick summary of what the model is/does. -->
17
 
 
28
  - **Language:** English
29
  - **Finetuned from model:** yiyanghkust/finbert-tone
30
 
31
+ ### Model Sources
32
 
33
  <!-- Provide the basic links for the model. -->
34
 
 
47
  from transformers import pipeline
48
 
49
  # Load the fine-tuned FinBERT model and tokenizer
50
+ finbert = BertForSequenceClassification.from_pretrained('kdave/FineTuned_Finbert', num_labels=3)
51
  tokenizer = BertTokenizer.from_pretrained('kdave/FineTuned_Finbert')
52
 
53
  # Create a sentiment-analysis pipeline
 
148
 
149
  # Create a sentiment-analysis pipeline
150
  nlp_pipeline = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer)
151
+ ```
152
+
153
  Step 3: Perform Sentiment Analysis
154
  Now, you're ready to analyze sentiment! Provide the model with sentences related to Indian stock market news:
155
 
156
+ ```python
 
157
  # Example sentences related to Indian stock market news
158
  sentences = [
159
  "The Indian stock market experienced a surge in trading activity.",