Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from ultralytics import YOLO
|
5 |
+
|
6 |
+
# Load the YOLOv8 model
|
7 |
+
model = YOLO("best.pt") # Ensure this file is in the same directory as app.py on Hugging Face
|
8 |
+
|
9 |
+
# Define the inference function
|
10 |
+
def predict(image):
|
11 |
+
# Convert the input image from RGB to BGR (OpenCV format)
|
12 |
+
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
13 |
+
|
14 |
+
# Run the model on the input image
|
15 |
+
results = model(image_bgr)
|
16 |
+
|
17 |
+
# Extract the result image with detections
|
18 |
+
annotated_image = results[0].plot() # Returns a BGR image with annotations
|
19 |
+
|
20 |
+
# Convert the image back to RGB for displaying in Gradio
|
21 |
+
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
22 |
+
|
23 |
+
return annotated_image_rgb
|
24 |
+
|
25 |
+
# Define the Gradio interface
|
26 |
+
interface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
29 |
+
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
30 |
+
title="YOLOv8 Object Detection",
|
31 |
+
description="Upload an image to detect objects with YOLOv8 model."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the app
|
35 |
+
if __name__ == "__main__":
|
36 |
+
interface.launch(share=True)
|