import torch from ultralytics import YOLO import cv2 import numpy as np # Load the model model = YOLO("best.pt") def predict(image_path): # Load image image = cv2.imread(image_path) # Inference results = model(image) # Parse results into CVAT format (adjust as needed) annotations = [] for box in results[0].boxes.data: x1, y1, x2, y2, confidence, class_id = box[:6] annotations.append({ "x1": int(x1), "y1": int(y1), "x2": int(x2), "y2": int(y2), "confidence": float(confidence), "class": int(class_id) }) return annotations