File size: 1,523 Bytes
191d1aa
 
 
 
 
 
 
1bd810f
191d1aa
 
 
 
 
 
 
 
 
 
 
 
26e5d3e
 
 
 
191d1aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e5d3e
 
 
191d1aa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-text-classification-template
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-text-classification-template

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6637
- F1: 0.5
- Roc Auc: 0.6667
- Accuracy: 0.3333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1  | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---:|:-------:|:--------:|
| No log        | 1.0   | 6    | 0.6637          | 0.5 | 0.6667  | 0.3333   |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2