kelestemur commited on
Commit
14c7954
·
1 Parent(s): f7b28fc

first model for LunarLander trained with PPO

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.57 +/- 20.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6081dc9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6081dca60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6081dcaf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6081dcb80>", "_build": "<function ActorCriticPolicy._build at 0x7fe6081dcc10>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6081dcca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6081dcd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6081dcdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6081dce50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6081dcee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6081dcf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe6081dd1b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673213533541588364, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEr2jL6Eep4/kAwcv/xDFL+Ynoe+zHguvgAAAAAAAAAAs5ENvrMBkD7u/UQ+FzWHvpRH7D1fIo47AAAAAAAAAABr8YC+06SrPruVND5h2Iq+B+sgOxN/kz0AAAAAAAAAAFvGmr4NPgk/otvFu4FKwr6bdyO+1t4OPgAAAAAAAAAAGsocPk5KAD/e9WW+snOWvosBX7w5rYy8AAAAAAAAAACtiZq+7byMvetsojrWX8Y5LFLtPiW69LkAAIA/AACAP0Dvgb1IQ4O6340bPN9P7rhi8806htPitwAAgD8AAIA/JouXPQ6ElryiIse8AqllPVLUvDzvLkM7AACAPwAAgD/91Fy+332ZPLJiojuP5s65aqwlvkJq0ToAAIA/AACAPwAhYr17ep66upwjtkBp77D0Yl46ZzJDNQAAgD8AAIA/2s8MvnH4bruGLwG8BX0Zuu3sFT32pgM7AACAPwAAgD9dZ2e+qUh/PjSwhD7v2a6+m5mbvG7sdjwAAAAAAAAAADNHMryDTkW8ODmROjn0jjzrtqY9SIdqvQAAgD8AAIA//SWxvpf3Ez9SS1y8FyXTvnGWX76y5Lk9AAAAAAAAAAD67GW+/QY4P3K7Mr7RX9W+4h0Rvu7mezwAAAAAAAAAADOT1jrEqZ8/rQXDvA1NwL7adBM+QkGTuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO4pz1BGkckCUhpRSlIwBbJRNmQOMAXSUR0CTN56bvw3HdX2UKGgGaAloD0MIuQA0SpccRECUhpRSlGgVS/BoFkdAkzfmuxKQJXV9lChoBmgJaA9DCJeMYyQ7zHJAlIaUUpRoFU0pAmgWR0CTODXfIjnndX2UKGgGaAloD0MI7uvAOePNcUCUhpRSlGgVS+loFkdAkzixuCPIXHV9lChoBmgJaA9DCKN2vwpwh29AlIaUUpRoFU24AmgWR0CTOYmapgkUdX2UKGgGaAloD0MIGF5J8hwBc0CUhpRSlGgVTXkBaBZHQJM5q+ueSSx1fZQoaAZoCWgPQwhGskeoGaBxQJSGlFKUaBVNyQFoFkdAkznPT1CgLHV9lChoBmgJaA9DCCtoWmJlLm9AlIaUUpRoFU1HAmgWR0CTOl6vJRwZdX2UKGgGaAloD0MI1NfzNcvQbkCUhpRSlGgVTb8BaBZHQJM6mUt7KJV1fZQoaAZoCWgPQwi0rPvHgjNyQJSGlFKUaBVNMAFoFkdAkz3+2uxKQXV9lChoBmgJaA9DCHKKjuQyeHNAlIaUUpRoFU0FAWgWR0CTQHl3Qla9dX2UKGgGaAloD0MI8BZIUPwccUCUhpRSlGgVTS0CaBZHQJNAepFTeft1fZQoaAZoCWgPQwiUEReABmtxQJSGlFKUaBVNFwFoFkdAk0Gf/rB0p3V9lChoBmgJaA9DCEga3NZWknBAlIaUUpRoFU0xAWgWR0CTQcoDPnjidX2UKGgGaAloD0MIGLFPAIVtcECUhpRSlGgVTRUBaBZHQJNB3EAHVwx1fZQoaAZoCWgPQwgeqb7zi7BtQJSGlFKUaBVL+WgWR0CTQkgiNbTudX2UKGgGaAloD0MIX9ODgtLWcECUhpRSlGgVTcADaBZHQJND51uBMBZ1fZQoaAZoCWgPQwiZSj/hrKJxQJSGlFKUaBVNrQFoFkdAk0SE7GNrCXV9lChoBmgJaA9DCIMXfQWp7nJAlIaUUpRoFU2LAWgWR0CTRtzasZHedX2UKGgGaAloD0MIQIf58gImckCUhpRSlGgVTcABaBZHQJNH4fnwG4Z1fZQoaAZoCWgPQwgo84++yZhxQJSGlFKUaBVNHgJoFkdAk0ld5MURF3V9lChoBmgJaA9DCJP8iF8x+W9AlIaUUpRoFU2YAWgWR0CTSbJVbRnfdX2UKGgGaAloD0MIup9TkF9acUCUhpRSlGgVS/hoFkdAk0ozjaPCEnV9lChoBmgJaA9DCKDBps7jP3NAlIaUUpRoFU3KAWgWR0CTSkfdAPd3dX2UKGgGaAloD0MI7YMsCyaIUkCUhpRSlGgVS7poFkdAk0s/k/8l5XV9lChoBmgJaA9DCLOz6J2KhG9AlIaUUpRoFU3iAWgWR0CTS4POIInjdX2UKGgGaAloD0MInUfF/50FcUCUhpRSlGgVTYIBaBZHQJNM/6SDAah1fZQoaAZoCWgPQwgIza57671wQJSGlFKUaBVNWQFoFkdAk09aABkqc3V9lChoBmgJaA9DCEHUfQBSRUdAlIaUUpRoFUu5aBZHQJNTtItlI3B1fZQoaAZoCWgPQwgJFoczv0JtQJSGlFKUaBVNHAFoFkdAk1QVTJhfB3V9lChoBmgJaA9DCP6d7dEbeXBAlIaUUpRoFU03AWgWR0CTVDDfm9xqdX2UKGgGaAloD0MIT3l0I+zbcUCUhpRSlGgVTcoBaBZHQJNUps7+1jR1fZQoaAZoCWgPQwgoucMm8rZyQJSGlFKUaBVNFAFoFkdAk1W8/MW43HV9lChoBmgJaA9DCKuSyD6I4HBAlIaUUpRoFU0eAWgWR0CTVdPfsNUgdX2UKGgGaAloD0MIy59vCxY2b0CUhpRSlGgVTeABaBZHQJNV6J3xFy91fZQoaAZoCWgPQwg0LEZd68hvQJSGlFKUaBVN2QFoFkdAk1YO1KGtZHV9lChoBmgJaA9DCNV3flGCxXBAlIaUUpRoFU1AAWgWR0CTV/m/WUbDdX2UKGgGaAloD0MIkIgpkQTJcECUhpRSlGgVTUYBaBZHQJNYG34Kx9p1fZQoaAZoCWgPQwhnKsQjse9xQJSGlFKUaBVN9wJoFkdAk1g0QGwA2nV9lChoBmgJaA9DCMPVARD323BAlIaUUpRoFU3sAWgWR0CTWNSntOVPdX2UKGgGaAloD0MIpOAp5MphckCUhpRSlGgVS+BoFkdAk1jz3225QXV9lChoBmgJaA9DCBuADYhQj3FAlIaUUpRoFU1TAWgWR0CTWVGVzIV/dX2UKGgGaAloD0MIe6GA7WDAbkCUhpRSlGgVTYMCaBZHQJNaF3HJcPh1fZQoaAZoCWgPQwiB64oZoUpwQJSGlFKUaBVNagFoFkdAk1s8ByS3b3V9lChoBmgJaA9DCJSD2QSYJG5AlIaUUpRoFU0HAWgWR0CTcMO/+Kj0dX2UKGgGaAloD0MIcY+lD93rcECUhpRSlGgVTSkBaBZHQJNxWOGTLW91fZQoaAZoCWgPQwipa+19qmxyQJSGlFKUaBVNDQFoFkdAk3HpprULD3V9lChoBmgJaA9DCM9m1eeqQ3JAlIaUUpRoFUvaaBZHQJNyWafBeol1fZQoaAZoCWgPQwjH9e/6DHRyQJSGlFKUaBVNQAFoFkdAk3JuHN5dGHV9lChoBmgJaA9DCB6jPPMyDXBAlIaUUpRoFU0fAWgWR0CTcsgVXV9XdX2UKGgGaAloD0MI2Lj+XR9DcUCUhpRSlGgVS/VoFkdAk3Mb3j+72HV9lChoBmgJaA9DCLLYJhUN+mxAlIaUUpRoFU1ZAWgWR0CTc1QI2OyWdX2UKGgGaAloD0MICtY4m44GckCUhpRSlGgVTQoBaBZHQJNz+tPpIMB1fZQoaAZoCWgPQwhGCI82zmNyQJSGlFKUaBVNEAFoFkdAk3T1e0G/vnV9lChoBmgJaA9DCEpgcw7eKnJAlIaUUpRoFU0KAWgWR0CTdS6eoUBXdX2UKGgGaAloD0MIQ8nk1E7AbkCUhpRSlGgVTRwBaBZHQJN2vKEFnqV1fZQoaAZoCWgPQwi0zCIUG2NwQJSGlFKUaBVNqgFoFkdAk3cslHBk7XV9lChoBmgJaA9DCBx79lymXnBAlIaUUpRoFU3HAWgWR0CTeBf4REncdX2UKGgGaAloD0MIVoMwt3vHUECUhpRSlGgVS79oFkdAk3guYIBzWHV9lChoBmgJaA9DCAdi2cyhGHJAlIaUUpRoFU1UAWgWR0CTef5cTrVwdX2UKGgGaAloD0MIQni0ccQNbkCUhpRSlGgVTRUBaBZHQJN6D4XXRPZ1fZQoaAZoCWgPQwhlxttKr2RzQJSGlFKUaBVNKwFoFkdAk3tXVbzK93V9lChoBmgJaA9DCNjWT//ZomxAlIaUUpRoFUv/aBZHQJN718kUsWh1fZQoaAZoCWgPQwg7i96pAABxQJSGlFKUaBVNIAFoFkdAk3xztsvZiHV9lChoBmgJaA9DCFg7inPUQUtAlIaUUpRoFUunaBZHQJN8fdIoVmB1fZQoaAZoCWgPQwjMtP0rq81wQJSGlFKUaBVNMwFoFkdAk3zBvFWGRHV9lChoBmgJaA9DCD2cwHRaVXJAlIaUUpRoFU0MAmgWR0CTfWIo3JgcdX2UKGgGaAloD0MIRG/x8J4xcUCUhpRSlGgVTTkBaBZHQJN9nONYKY11fZQoaAZoCWgPQwgke4Sa4ZZwQJSGlFKUaBVNXAFoFkdAk334kNWluXV9lChoBmgJaA9DCKsF9pgIwXFAlIaUUpRoFU0KAWgWR0CTfilD4QBgdX2UKGgGaAloD0MI31M57SnMb0CUhpRSlGgVTRUBaBZHQJOAS3Td+G51fZQoaAZoCWgPQwiEnWLV4JxwQJSGlFKUaBVNAgFoFkdAk4CLZamoBXV9lChoBmgJaA9DCEYiNIKNB0ZAlIaUUpRoFUvJaBZHQJOBuhYeT3Z1fZQoaAZoCWgPQwgge73746NwQJSGlFKUaBVNMAFoFkdAk4IQiiZfD3V9lChoBmgJaA9DCFq6gm3EzzBAlIaUUpRoFUvOaBZHQJOC51+y7f51fZQoaAZoCWgPQwh5zEBl/NFuQJSGlFKUaBVL+GgWR0CThLgiu+yrdX2UKGgGaAloD0MICaaaWcurcUCUhpRSlGgVTQcCaBZHQJOFNd2PkrB1fZQoaAZoCWgPQwgotoKm5axxQJSGlFKUaBVNVgFoFkdAk4VdKyv9tXV9lChoBmgJaA9DCCAMPPceG3BAlIaUUpRoFU0CAWgWR0CThdB68g6mdX2UKGgGaAloD0MI38K68a6BcUCUhpRSlGgVTSgBaBZHQJOGMKVpsXV1fZQoaAZoCWgPQwjuPsdHixZuQJSGlFKUaBVL9WgWR0CThkckMTewdX2UKGgGaAloD0MIozzzctiyb0CUhpRSlGgVTRQBaBZHQJOGtW2gFot1fZQoaAZoCWgPQwiRmKCGLzVyQJSGlFKUaBVNfgFoFkdAk4bUXxe9jHV9lChoBmgJaA9DCKhXyjKEB3FAlIaUUpRoFU0/AWgWR0CTiHpnHvMKdX2UKGgGaAloD0MIJ0pCIu04b0CUhpRSlGgVTZYBaBZHQJOJSSFGoaV1fZQoaAZoCWgPQwh+UYL+Qo9xQJSGlFKUaBVNFAFoFkdAk4ms6JZW73V9lChoBmgJaA9DCKEwKNOoDnFAlIaUUpRoFU0aAWgWR0CTihpH7P6bdX2UKGgGaAloD0MINbdCWI2YckCUhpRSlGgVTRIBaBZHQJOK8z544ZN1fZQoaAZoCWgPQwhwtOOGX+NuQJSGlFKUaBVL+WgWR0CTi0gb6xgRdX2UKGgGaAloD0MIccyyJwEKcUCUhpRSlGgVTRUBaBZHQJOLV9NN8E51fZQoaAZoCWgPQwjT9q+sNO1RQJSGlFKUaBVLwWgWR0CTi3D/VAiWdX2UKGgGaAloD0MIQGmoUcj3cUCUhpRSlGgVTQQBaBZHQJONCjWTX8R1fZQoaAZoCWgPQwgUX+0ozmpxQJSGlFKUaBVL82gWR0CTjW+1Bt1qdX2UKGgGaAloD0MI+yE2WHgZcECUhpRSlGgVS/NoFkdAk44+UQkHEHV9lChoBmgJaA9DCFVoIJbNLHBAlIaUUpRoFU0qAWgWR0CTjsaePJaJdX2UKGgGaAloD0MIBDqTNpXNcECUhpRSlGgVTSQBaBZHQJOPUEIPbwl1fZQoaAZoCWgPQwh56SYxCElvQJSGlFKUaBVNJQFoFkdAk49sKohpxnV9lChoBmgJaA9DCL02Gyux9m9AlIaUUpRoFUvzaBZHQJOP9krf+CN1fZQoaAZoCWgPQwjLSpNSUKRxQJSGlFKUaBVL9mgWR0CTkM11W8yvdX2UKGgGaAloD0MIs7eU84U6cUCUhpRSlGgVTUYBaBZHQJOQ+2G7Bft1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2ee4728767476733480b56274ae05047fdeb5f138e0698e01fd8bae537de85b
3
+ size 147190
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6081dc9d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6081dca60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6081dcaf0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6081dcb80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe6081dcc10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe6081dcca0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6081dcd30>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe6081dcdc0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6081dce50>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6081dcee0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6081dcf70>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe6081dd1b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673213533541588364,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEr2jL6Eep4/kAwcv/xDFL+Ynoe+zHguvgAAAAAAAAAAs5ENvrMBkD7u/UQ+FzWHvpRH7D1fIo47AAAAAAAAAABr8YC+06SrPruVND5h2Iq+B+sgOxN/kz0AAAAAAAAAAFvGmr4NPgk/otvFu4FKwr6bdyO+1t4OPgAAAAAAAAAAGsocPk5KAD/e9WW+snOWvosBX7w5rYy8AAAAAAAAAACtiZq+7byMvetsojrWX8Y5LFLtPiW69LkAAIA/AACAP0Dvgb1IQ4O6340bPN9P7rhi8806htPitwAAgD8AAIA/JouXPQ6ElryiIse8AqllPVLUvDzvLkM7AACAPwAAgD/91Fy+332ZPLJiojuP5s65aqwlvkJq0ToAAIA/AACAPwAhYr17ep66upwjtkBp77D0Yl46ZzJDNQAAgD8AAIA/2s8MvnH4bruGLwG8BX0Zuu3sFT32pgM7AACAPwAAgD9dZ2e+qUh/PjSwhD7v2a6+m5mbvG7sdjwAAAAAAAAAADNHMryDTkW8ODmROjn0jjzrtqY9SIdqvQAAgD8AAIA//SWxvpf3Ez9SS1y8FyXTvnGWX76y5Lk9AAAAAAAAAAD67GW+/QY4P3K7Mr7RX9W+4h0Rvu7mezwAAAAAAAAAADOT1jrEqZ8/rQXDvA1NwL7adBM+QkGTuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO4pz1BGkckCUhpRSlIwBbJRNmQOMAXSUR0CTN56bvw3HdX2UKGgGaAloD0MIuQA0SpccRECUhpRSlGgVS/BoFkdAkzfmuxKQJXV9lChoBmgJaA9DCJeMYyQ7zHJAlIaUUpRoFU0pAmgWR0CTODXfIjnndX2UKGgGaAloD0MI7uvAOePNcUCUhpRSlGgVS+loFkdAkzixuCPIXHV9lChoBmgJaA9DCKN2vwpwh29AlIaUUpRoFU24AmgWR0CTOYmapgkUdX2UKGgGaAloD0MIGF5J8hwBc0CUhpRSlGgVTXkBaBZHQJM5q+ueSSx1fZQoaAZoCWgPQwhGskeoGaBxQJSGlFKUaBVNyQFoFkdAkznPT1CgLHV9lChoBmgJaA9DCCtoWmJlLm9AlIaUUpRoFU1HAmgWR0CTOl6vJRwZdX2UKGgGaAloD0MI1NfzNcvQbkCUhpRSlGgVTb8BaBZHQJM6mUt7KJV1fZQoaAZoCWgPQwi0rPvHgjNyQJSGlFKUaBVNMAFoFkdAkz3+2uxKQXV9lChoBmgJaA9DCHKKjuQyeHNAlIaUUpRoFU0FAWgWR0CTQHl3Qla9dX2UKGgGaAloD0MI8BZIUPwccUCUhpRSlGgVTS0CaBZHQJNAepFTeft1fZQoaAZoCWgPQwiUEReABmtxQJSGlFKUaBVNFwFoFkdAk0Gf/rB0p3V9lChoBmgJaA9DCEga3NZWknBAlIaUUpRoFU0xAWgWR0CTQcoDPnjidX2UKGgGaAloD0MIGLFPAIVtcECUhpRSlGgVTRUBaBZHQJNB3EAHVwx1fZQoaAZoCWgPQwgeqb7zi7BtQJSGlFKUaBVL+WgWR0CTQkgiNbTudX2UKGgGaAloD0MIX9ODgtLWcECUhpRSlGgVTcADaBZHQJND51uBMBZ1fZQoaAZoCWgPQwiZSj/hrKJxQJSGlFKUaBVNrQFoFkdAk0SE7GNrCXV9lChoBmgJaA9DCIMXfQWp7nJAlIaUUpRoFU2LAWgWR0CTRtzasZHedX2UKGgGaAloD0MIQIf58gImckCUhpRSlGgVTcABaBZHQJNH4fnwG4Z1fZQoaAZoCWgPQwgo84++yZhxQJSGlFKUaBVNHgJoFkdAk0ld5MURF3V9lChoBmgJaA9DCJP8iF8x+W9AlIaUUpRoFU2YAWgWR0CTSbJVbRnfdX2UKGgGaAloD0MIup9TkF9acUCUhpRSlGgVS/hoFkdAk0ozjaPCEnV9lChoBmgJaA9DCKDBps7jP3NAlIaUUpRoFU3KAWgWR0CTSkfdAPd3dX2UKGgGaAloD0MI7YMsCyaIUkCUhpRSlGgVS7poFkdAk0s/k/8l5XV9lChoBmgJaA9DCLOz6J2KhG9AlIaUUpRoFU3iAWgWR0CTS4POIInjdX2UKGgGaAloD0MInUfF/50FcUCUhpRSlGgVTYIBaBZHQJNM/6SDAah1fZQoaAZoCWgPQwgIza57671wQJSGlFKUaBVNWQFoFkdAk09aABkqc3V9lChoBmgJaA9DCEHUfQBSRUdAlIaUUpRoFUu5aBZHQJNTtItlI3B1fZQoaAZoCWgPQwgJFoczv0JtQJSGlFKUaBVNHAFoFkdAk1QVTJhfB3V9lChoBmgJaA9DCP6d7dEbeXBAlIaUUpRoFU03AWgWR0CTVDDfm9xqdX2UKGgGaAloD0MIT3l0I+zbcUCUhpRSlGgVTcoBaBZHQJNUps7+1jR1fZQoaAZoCWgPQwgoucMm8rZyQJSGlFKUaBVNFAFoFkdAk1W8/MW43HV9lChoBmgJaA9DCKuSyD6I4HBAlIaUUpRoFU0eAWgWR0CTVdPfsNUgdX2UKGgGaAloD0MIy59vCxY2b0CUhpRSlGgVTeABaBZHQJNV6J3xFy91fZQoaAZoCWgPQwg0LEZd68hvQJSGlFKUaBVN2QFoFkdAk1YO1KGtZHV9lChoBmgJaA9DCNV3flGCxXBAlIaUUpRoFU1AAWgWR0CTV/m/WUbDdX2UKGgGaAloD0MIkIgpkQTJcECUhpRSlGgVTUYBaBZHQJNYG34Kx9p1fZQoaAZoCWgPQwhnKsQjse9xQJSGlFKUaBVN9wJoFkdAk1g0QGwA2nV9lChoBmgJaA9DCMPVARD323BAlIaUUpRoFU3sAWgWR0CTWNSntOVPdX2UKGgGaAloD0MIpOAp5MphckCUhpRSlGgVS+BoFkdAk1jz3225QXV9lChoBmgJaA9DCBuADYhQj3FAlIaUUpRoFU1TAWgWR0CTWVGVzIV/dX2UKGgGaAloD0MIe6GA7WDAbkCUhpRSlGgVTYMCaBZHQJNaF3HJcPh1fZQoaAZoCWgPQwiB64oZoUpwQJSGlFKUaBVNagFoFkdAk1s8ByS3b3V9lChoBmgJaA9DCJSD2QSYJG5AlIaUUpRoFU0HAWgWR0CTcMO/+Kj0dX2UKGgGaAloD0MIcY+lD93rcECUhpRSlGgVTSkBaBZHQJNxWOGTLW91fZQoaAZoCWgPQwipa+19qmxyQJSGlFKUaBVNDQFoFkdAk3HpprULD3V9lChoBmgJaA9DCM9m1eeqQ3JAlIaUUpRoFUvaaBZHQJNyWafBeol1fZQoaAZoCWgPQwjH9e/6DHRyQJSGlFKUaBVNQAFoFkdAk3JuHN5dGHV9lChoBmgJaA9DCB6jPPMyDXBAlIaUUpRoFU0fAWgWR0CTcsgVXV9XdX2UKGgGaAloD0MI2Lj+XR9DcUCUhpRSlGgVS/VoFkdAk3Mb3j+72HV9lChoBmgJaA9DCLLYJhUN+mxAlIaUUpRoFU1ZAWgWR0CTc1QI2OyWdX2UKGgGaAloD0MICtY4m44GckCUhpRSlGgVTQoBaBZHQJNz+tPpIMB1fZQoaAZoCWgPQwhGCI82zmNyQJSGlFKUaBVNEAFoFkdAk3T1e0G/vnV9lChoBmgJaA9DCEpgcw7eKnJAlIaUUpRoFU0KAWgWR0CTdS6eoUBXdX2UKGgGaAloD0MIQ8nk1E7AbkCUhpRSlGgVTRwBaBZHQJN2vKEFnqV1fZQoaAZoCWgPQwi0zCIUG2NwQJSGlFKUaBVNqgFoFkdAk3cslHBk7XV9lChoBmgJaA9DCBx79lymXnBAlIaUUpRoFU3HAWgWR0CTeBf4REncdX2UKGgGaAloD0MIVoMwt3vHUECUhpRSlGgVS79oFkdAk3guYIBzWHV9lChoBmgJaA9DCAdi2cyhGHJAlIaUUpRoFU1UAWgWR0CTef5cTrVwdX2UKGgGaAloD0MIQni0ccQNbkCUhpRSlGgVTRUBaBZHQJN6D4XXRPZ1fZQoaAZoCWgPQwhlxttKr2RzQJSGlFKUaBVNKwFoFkdAk3tXVbzK93V9lChoBmgJaA9DCNjWT//ZomxAlIaUUpRoFUv/aBZHQJN718kUsWh1fZQoaAZoCWgPQwg7i96pAABxQJSGlFKUaBVNIAFoFkdAk3xztsvZiHV9lChoBmgJaA9DCFg7inPUQUtAlIaUUpRoFUunaBZHQJN8fdIoVmB1fZQoaAZoCWgPQwjMtP0rq81wQJSGlFKUaBVNMwFoFkdAk3zBvFWGRHV9lChoBmgJaA9DCD2cwHRaVXJAlIaUUpRoFU0MAmgWR0CTfWIo3JgcdX2UKGgGaAloD0MIRG/x8J4xcUCUhpRSlGgVTTkBaBZHQJN9nONYKY11fZQoaAZoCWgPQwgke4Sa4ZZwQJSGlFKUaBVNXAFoFkdAk334kNWluXV9lChoBmgJaA9DCKsF9pgIwXFAlIaUUpRoFU0KAWgWR0CTfilD4QBgdX2UKGgGaAloD0MI31M57SnMb0CUhpRSlGgVTRUBaBZHQJOAS3Td+G51fZQoaAZoCWgPQwiEnWLV4JxwQJSGlFKUaBVNAgFoFkdAk4CLZamoBXV9lChoBmgJaA9DCEYiNIKNB0ZAlIaUUpRoFUvJaBZHQJOBuhYeT3Z1fZQoaAZoCWgPQwgge73746NwQJSGlFKUaBVNMAFoFkdAk4IQiiZfD3V9lChoBmgJaA9DCFq6gm3EzzBAlIaUUpRoFUvOaBZHQJOC51+y7f51fZQoaAZoCWgPQwh5zEBl/NFuQJSGlFKUaBVL+GgWR0CThLgiu+yrdX2UKGgGaAloD0MICaaaWcurcUCUhpRSlGgVTQcCaBZHQJOFNd2PkrB1fZQoaAZoCWgPQwgotoKm5axxQJSGlFKUaBVNVgFoFkdAk4VdKyv9tXV9lChoBmgJaA9DCCAMPPceG3BAlIaUUpRoFU0CAWgWR0CThdB68g6mdX2UKGgGaAloD0MI38K68a6BcUCUhpRSlGgVTSgBaBZHQJOGMKVpsXV1fZQoaAZoCWgPQwjuPsdHixZuQJSGlFKUaBVL9WgWR0CThkckMTewdX2UKGgGaAloD0MIozzzctiyb0CUhpRSlGgVTRQBaBZHQJOGtW2gFot1fZQoaAZoCWgPQwiRmKCGLzVyQJSGlFKUaBVNfgFoFkdAk4bUXxe9jHV9lChoBmgJaA9DCKhXyjKEB3FAlIaUUpRoFU0/AWgWR0CTiHpnHvMKdX2UKGgGaAloD0MIJ0pCIu04b0CUhpRSlGgVTZYBaBZHQJOJSSFGoaV1fZQoaAZoCWgPQwh+UYL+Qo9xQJSGlFKUaBVNFAFoFkdAk4ms6JZW73V9lChoBmgJaA9DCKEwKNOoDnFAlIaUUpRoFU0aAWgWR0CTihpH7P6bdX2UKGgGaAloD0MINbdCWI2YckCUhpRSlGgVTRIBaBZHQJOK8z544ZN1fZQoaAZoCWgPQwhwtOOGX+NuQJSGlFKUaBVL+WgWR0CTi0gb6xgRdX2UKGgGaAloD0MIccyyJwEKcUCUhpRSlGgVTRUBaBZHQJOLV9NN8E51fZQoaAZoCWgPQwjT9q+sNO1RQJSGlFKUaBVLwWgWR0CTi3D/VAiWdX2UKGgGaAloD0MIQGmoUcj3cUCUhpRSlGgVTQQBaBZHQJONCjWTX8R1fZQoaAZoCWgPQwgUX+0ozmpxQJSGlFKUaBVL82gWR0CTjW+1Bt1qdX2UKGgGaAloD0MI+yE2WHgZcECUhpRSlGgVS/NoFkdAk44+UQkHEHV9lChoBmgJaA9DCFVoIJbNLHBAlIaUUpRoFU0qAWgWR0CTjsaePJaJdX2UKGgGaAloD0MIBDqTNpXNcECUhpRSlGgVTSQBaBZHQJOPUEIPbwl1fZQoaAZoCWgPQwh56SYxCElvQJSGlFKUaBVNJQFoFkdAk49sKohpxnV9lChoBmgJaA9DCL02Gyux9m9AlIaUUpRoFUvzaBZHQJOP9krf+CN1fZQoaAZoCWgPQwjLSpNSUKRxQJSGlFKUaBVL9mgWR0CTkM11W8yvdX2UKGgGaAloD0MIs7eU84U6cUCUhpRSlGgVTUYBaBZHQJOQ+2G7Bft1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91ca02baca50105a31518c264c53dedd256369519385abb996d062ce7701496b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce77fe3710a8e2507b37b8274e0071d64960d95f67dc315fc0630da764c98d91
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (203 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.56668659975435, "std_reward": 20.348185977104684, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T21:58:02.522716"}