|
|
|
import os |
|
from typing import Dict, List, Any |
|
import groundingdino |
|
from groundingdino.util.inference import load_model, load_image, predict, annotate |
|
import subprocess |
|
|
|
|
|
HOME = os.getcwd() |
|
|
|
|
|
PACKAGE_HOME = os.path.dirname(groundingdino.__file__) |
|
|
|
CONFIG_PATH = os.path.join(PACKAGE_HOME, "config", "GroundingDINO_SwinT_OGC.py") |
|
WEIGHTS_PATH = os.path.join("model", "weights", "groundingdino_swint_ogc.pth") |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path): |
|
|
|
|
|
self.model = load_model(CONFIG_PATH, path) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
inputs = data.pop("inputs") |
|
image = inputs.pop("image") |
|
prompt = inputs.pop("prompt") |
|
|
|
return [{ |
|
"image": image, |
|
"prompt": prompt, |
|
}] |
|
|