ppo-LunarLander-v2_1 / config.json
kenzzo13's picture
Upload PPO LunarLander-v2 trained agent
b1d17cb
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e34aa978e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e34aa978ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e34aa978f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e34aa979000>", "_build": "<function ActorCriticPolicy._build at 0x7e34aa979090>", "forward": "<function ActorCriticPolicy.forward at 0x7e34aa979120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e34aa9791b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e34aa979240>", "_predict": "<function ActorCriticPolicy._predict at 0x7e34aa9792d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e34aa979360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e34aa9793f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e34aa979480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e350ec42900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690555438331406085, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoOtj32hBi6yHPNOve0CDYxfY07cIjzuQAAgD8AAAAA8v+JvuSQzz7S7uY9PuhwvrRSDr6av2U9AAAAAAAAAACzBjY9PP6vP5028T0i0wK/3pLNPQXfhz0AAAAAAAAAAGbe0rvEOaI/gY4dvVGS8r7qGI08OKgbPAAAAAAAAAAAmm4bPfGpij+kRBs847LZvi6ZvT0CBAi9AAAAAAAAAADABza+ZFWQPwLwFr871Qu/EMFlvnZFkL4AAAAAAAAAAPMLyr0z7AU/jiQzvS3Ekb6+9E29IVbFPAAAAAAAAAAAswpivXbGjj9tnvW9bNbgvgKQub0zMh09AAAAAAAAAACajn29d5I/PhP2ID6xgQ2+Y0aJPfZHNbsAAAAAAAAAANrj1L1s9+s849LxPdrWSL6H8js9IsZ9PAAAAAAAAAAAQHG8Pa5vjLrFw/i3kX/gssWRMbvlYRA3AACAPwAAAADAybC9n0WIP1JYJL77vtS+Sdyzvev38bwAAAAAAAAAAA1Uwb3xyR8+5VqwPUs6Vb7lVCU8eiitPQAAAAAAAAAArXZDPhZFbT+so0s+5jmcvtO9cD4DGeA8AAAAAAAAAACQZ4A+e4ObP6RBCT88sAS/5P7RPqgv6T0AAAAAAAAAAACDdL0sXLI+aXg2vUZ+f77cjO28GsL8vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEFKbKA8SyMAWyUTT8BjAF0lEdAsH4QRODaoXV9lChoBkdAYbUvRqoIfWgHTegDaAhHQLB+NYVIqb11fZQoaAZHQHHeiiAUcn5oB00YAWgIR0CwfjtSIgvEdX2UKGgGR0By5ib3Gn4xaAdNEwFoCEdAsH5AQwsXi3V9lChoBkdAcPXZVXFLnWgHTRkBaAhHQLB+QFlTWG11fZQoaAZHQHBIy17Y02toB00PAWgIR0CwfkRnrY5DdX2UKGgGR0ByQUy1uzhQaAdNHwFoCEdAsH6HUy57PnV9lChoBkdAbukxASnLq2gHTRUBaAhHQLB+nCPp6hR1fZQoaAZHQHIEvoNd7fJoB0v+aAhHQLB+u4EwFkh1fZQoaAZHQHFyLamGdqdoB00IAWgIR0Cwf0XLNfPYdX2UKGgGR0ByWbk1dgOSaAdNFAFoCEdAsH9YcvM8o3V9lChoBkdAcHB3/Pw/gWgHS/VoCEdAsH+O1OTJQ3V9lChoBkdAclqS3LFGX2gHS/5oCEdAsH+rXsgMdHV9lChoBkdAbmWy+HrQgWgHTR4BaAhHQLCABbah6B11fZQoaAZHQHDd37P6bfBoB00oAWgIR0CwgA5hBqsVdX2UKGgGR0BwtsTviLl4aAdL/WgIR0CwgA1lXiiqdX2UKGgGR0BygzbtZ3cIaAdNFwFoCEdAsIAfx3FDOXV9lChoBkdAcL3kFfReC2gHTSQBaAhHQLCAVXpW3jN1fZQoaAZHQHJyu5Fw1ixoB00rAWgIR0CwgG0/B3zMdX2UKGgGR0BwrquieumraAdNKQFoCEdAsIBsTtb9qHV9lChoBkdAcAzxQSBbwGgHS/JoCEdAsICKJXQtz3V9lChoBkdAcJJ9b5dnkGgHTUQBaAhHQLCAmNcW0qp1fZQoaAZHQHAU8QumJnBoB00pAWgIR0CwgKsWTHKfdX2UKGgGR0BuwI5Jbt7baAdNKwFoCEdAsIDDGtITXnV9lChoBkdAOrtBSk0rLGgHS9ZoCEdAsIErEaVD8nV9lChoBkdAcApzUZvUBmgHTREBaAhHQLCBUUp/gBN1fZQoaAZHQG3tcnVoYeloB00RAWgIR0CwgWPn4fwJdX2UKGgGR0BQI1CkXUH6aAdLw2gIR0CwgYoQ4CIUdX2UKGgGR0A+7MY/FBIGaAdL5mgIR0CwgbPzvqkedX2UKGgGR0BtPZA4XGfgaAdNIgFoCEdAsIHYU9IPLHV9lChoBkdAbcc21D0Dl2gHS/poCEdAsIHi40/GEXV9lChoBkdAOJsfRu0kW2gHS9doCEdAsIH3fMwDeXV9lChoBkdAOVWfPHDJl2gHS95oCEdAsIIEIRh+fHV9lChoBkdAcFIf8MuvlmgHTRwBaAhHQLCCIYFJQLx1fZQoaAZHQHLuK02LpA5oB00EAWgIR0CwgjRsImgKdX2UKGgGR0BxZbi6xxDLaAdNCgFoCEdAsIJuROk+HXV9lChoBkdAcMMAf+0gKWgHS/5oCEdAsIJ8pH7P6nV9lChoBkdAcTiHZ9NN8GgHTR8BaAhHQLCCozlLeyl1fZQoaAZHQHJmIhUzbexoB00wAWgIR0CwgvEGA09AdX2UKGgGR0BxVoi2UjcEaAdNHAFoCEdAsIM96nivPnV9lChoBkdAbaoTt9hJAmgHTQkBaAhHQLCDVnhKlHl1fZQoaAZHQG+DaTOgQH1oB0v9aAhHQLCDZuAqd6N1fZQoaAZHQG5Kr2HtWuJoB00DAWgIR0Cwg87xiG34dX2UKGgGR0BvytCw8nuzaAdNFwFoCEdAsIPS+JxecHV9lChoBkdAcJX3uuzQeGgHS/1oCEdAsIP032mHg3V9lChoBkdAcNZXA/LTyGgHTRsBaAhHQLCEXYoy9El1fZQoaAZHQHC5iWVu76JoB01GAWgIR0CwhHNNvfj0dX2UKGgGR0BuDqeRPoFFaAdNPwFoCEdAsIR73Gn4wnV9lChoBkdAcFzgpz90imgHTSoBaAhHQLCI9gxJul51fZQoaAZHQHCm8BhhH9ZoB00iAWgIR0CwiY5yIYWMdX2UKGgGR0BxER0ZFXq8aAdNEAFoCEdAsInZTUAks3V9lChoBkdAcFnuWa+ev2gHS/BoCEdAsIoNYhdMTXV9lChoBkdAXKxbgTAWSGgHTegDaAhHQLCKSJGvwE11fZQoaAZHQHKJbtRekYZoB0v8aAhHQLCK12KEWZZ1fZQoaAZHQHE9WjwhGH5oB02oAWgIR0CwiuKTGHYZdX2UKGgGR0Byyxn/T9bYaAdNVQFoCEdAsIsldxAB1nV9lChoBkdAbzTtKIznBGgHTSgBaAhHQLCLV8l5WzZ1fZQoaAZHQHIGksjFAFBoB00DAWgIR0Cwi42d7OVxdX2UKGgGR0BtL9nh86V/aAdNBAFoCEdAsIukVEd/8XV9lChoBkdAch7uTibUgGgHTQcBaAhHQLCLscBEKE51fZQoaAZHQHK2h4MWoFVoB01TAWgIR0Cwi9AhKUV0dX2UKGgGR0BzKwTbnHNpaAdNRQFoCEdAsIw/GjsUqXV9lChoBkdAcg2PhAGB4GgHTYcCaAhHQLCMtPMB6rx1fZQoaAZHQHJdxAfMfRxoB003AWgIR0CwjMftdAxBdX2UKGgGR0BQfoXGff4zaAdL0GgIR0CwjNIA4n4PdX2UKGgGR0BxBb5N47iiaAdNLAFoCEdAsIzXVsk6cXV9lChoBkdAcFbWoWHk92gHS+1oCEdAsIzi+23KCHV9lChoBkdAcfybj94u9WgHTXwBaAhHQLCNHDoQnQZ1fZQoaAZHQG/vsBQvYe1oB008AWgIR0CwjRpmyxA0dX2UKGgGR0BDFEORT0g9aAdLy2gIR0CwjSBjnV5KdX2UKGgGR0BsuPWDpTuOaAdNKAFoCEdAsI1LN9ph4XV9lChoBkdAbQqQWepXIWgHTSMBaAhHQLCNlt3fQ8h1fZQoaAZHQHHUrvkRzzVoB0v9aAhHQLCNnpz90ih1fZQoaAZHQHEHvYFqzqtoB00sAWgIR0Cwjeh9Tgl4dX2UKGgGR0BxigyrPt2LaAdNKwFoCEdAsI4ScWj46HV9lChoBkdAYpACz1K5CmgHTegDaAhHQLCOL9fkWAR1fZQoaAZHQHJO0DhcZ+BoB00PAWgIR0CwjuZyQxN7dX2UKGgGR0BxXxntfG+9aAdL82gIR0CwjvqA8SwodX2UKGgGR0ByiUjC53C9aAdNAgFoCEdAsI8a5PM0QHV9lChoBkdAbwfLsa86FWgHTXABaAhHQLCPITLGJep1fZQoaAZHQHGdGXTmW+poB00BAWgIR0CwjyFEZzgddX2UKGgGR0BQlTVMEidKaAdLyGgIR0Cwjy6vRqoIdX2UKGgGR0Bwak6GQCCBaAdNPQFoCEdAsI88uWa+e3V9lChoBkdAcfd/KQq7RWgHS/1oCEdAsI9HSJCSinV9lChoBkdAcW2rEtNBW2gHTUsBaAhHQLCPbciGFi91fZQoaAZHQG83VRUFSsNoB00PAWgIR0Cwj7bcTJyRdX2UKGgGR0BxpiTr3TNMaAdNEgFoCEdAsJAJCTlkpnV9lChoBkdAcZZlMyrPt2gHTQABaAhHQLCQEQkHD791fZQoaAZHQGUDLY5DJEJoB03oA2gIR0CwkGddAxBWdX2UKGgGR0ByD9VFQVKxaAdNNQFoCEdAsJCd/EwWWXV9lChoBkdAbkTz5GjKxWgHS/RoCEdAsJDdga3qiXV9lChoBkdAbqw+Pikwe2gHS/9oCEdAsJDisV+I/XV9lChoBkdAcVmCZF5OamgHTQ0BaAhHQLCRXP8AJcB1fZQoaAZHQHBmbZamoBJoB00bAWgIR0CwkV3VbzK+dX2UKGgGR0Byvz0QK8cuaAdNHAFoCEdAsJFulpGnXXV9lChoBkdAbllzwtrbg2gHTSIBaAhHQLCRbVvuPWB1fZQoaAZHQHBO5/kNnXdoB00oAWgIR0CwkXRIatLddX2UKGgGR0BHjjXvphWpaAdL1mgIR0CwkXfFR51OdX2UKGgGR0ByQa8ujASGaAdNCAFoCEdAsJGIqbz9THV9lChoBkdAcWXTewcHW2gHTScBaAhHQLCRmAxzq8l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}